Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,198 @@
|
|
1 |
---
|
2 |
license: llama2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
+
datasets:
|
4 |
+
- cerebras/SlimPajama-627B
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- Deci AI
|
10 |
+
- DeciLM
|
11 |
+
model-index:
|
12 |
+
- name: DeciLM 6B
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: text-generation
|
16 |
+
dataset:
|
17 |
+
type: ai2/arc
|
18 |
+
name: ai2_arc
|
19 |
+
metrics:
|
20 |
+
- name: ARC Challenge
|
21 |
+
type: ARC Challenge
|
22 |
+
value: 42.06
|
23 |
+
verified: false
|
24 |
+
- task:
|
25 |
+
type: text-generation
|
26 |
+
dataset:
|
27 |
+
type: ai2/arc
|
28 |
+
name: ai2_arc
|
29 |
+
metrics:
|
30 |
+
- name: ARC Easy
|
31 |
+
type: ARC Easy
|
32 |
+
value: 70.02
|
33 |
+
verified: false
|
34 |
+
- task:
|
35 |
+
type: text-generation
|
36 |
+
dataset:
|
37 |
+
type: boolq
|
38 |
+
name: boolq
|
39 |
+
metrics:
|
40 |
+
- name: BoolQ
|
41 |
+
type: BoolQ
|
42 |
+
value: 71.01
|
43 |
+
verified: false
|
44 |
+
- task:
|
45 |
+
type: text-generation
|
46 |
+
dataset:
|
47 |
+
type: hellaswag
|
48 |
+
name: hellaswag
|
49 |
+
metrics:
|
50 |
+
- name: HellaSwag
|
51 |
+
type: HellaSwag
|
52 |
+
value: 74.58
|
53 |
+
verified: false
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
dataset:
|
57 |
+
type: LAMBDA
|
58 |
+
name: OpenAI LAMBDA
|
59 |
+
metrics:
|
60 |
+
- name: LAMBDA
|
61 |
+
type: LAMBDA
|
62 |
+
value: 69.78
|
63 |
+
verified: false
|
64 |
+
- task:
|
65 |
+
type: text-generation
|
66 |
+
dataset:
|
67 |
+
type: OpenBookQA
|
68 |
+
name: openbookqa
|
69 |
+
metrics:
|
70 |
+
- name: OpenBookQA
|
71 |
+
type: OpenBookQA
|
72 |
+
value: 34
|
73 |
+
verified: false
|
74 |
+
- task:
|
75 |
+
type: text-generation
|
76 |
+
dataset:
|
77 |
+
type: PIQA
|
78 |
+
name: piqa
|
79 |
+
metrics:
|
80 |
+
- name: PIQA
|
81 |
+
type: PIQA
|
82 |
+
value: 77.09
|
83 |
+
verified: false
|
84 |
+
- task:
|
85 |
+
type: text-generation
|
86 |
+
dataset:
|
87 |
+
type: truthful_qa
|
88 |
+
name: truthful_qa
|
89 |
+
metrics:
|
90 |
+
- name: TruthfulQA
|
91 |
+
type: TruthfulQA
|
92 |
+
value: 36.19
|
93 |
+
verified: false
|
94 |
+
- task:
|
95 |
+
type: text-generation
|
96 |
+
dataset:
|
97 |
+
type: winogrande
|
98 |
+
name: winogrande
|
99 |
+
metrics:
|
100 |
+
- name: Winogrande
|
101 |
+
type: Winogrande
|
102 |
+
value: 68.03
|
103 |
+
verified: false
|
104 |
---
|
105 |
+
# DeciLM 6B
|
106 |
+
|
107 |
+
DeciLM 6B is a 5.7 billion parameter decoder-only text generation model. With a context window of 4096 tokens, the highly efficient model uses variable Grouped-Query Attention (GQA) to achieve an optimal balance between performance and computational efficiency. The model's architecture was generated using Deci's proprietary Neural Architecture Search-based technology, AutoNAC. DeciLM 6B underwent training utilizing the SlimPajamas dataset, leveraging advanced proprietary methodologies allowing for fast training.
|
108 |
+
|
109 |
+
## Model Details
|
110 |
+
|
111 |
+
### Model Description
|
112 |
+
|
113 |
+
Deci developed and publically released the DeciLM 6B large language model (LLM), a pretrained, high-efficiency generative text model with 5.7 billion parameters. DeciLM 6B outpaces pretrained models in its class, with a throughput that's up to 15 times that of Llama 2 7B's. DeciLM-6B was further LoRA fine-tuned for instruction following on a subset of the OpenOrca dataset, creating DeciLM 6B Instruct
|
114 |
+
|
115 |
+
- **Developed by:** Deci
|
116 |
+
- **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention.
|
117 |
+
- **Language(s) (NLP):** English
|
118 |
+
- **License:** [Llama 2 Community License Agreement](https://huggingface.co/Deci/DeciLM-6b/blob/main/LICENSE.md)
|
119 |
+
|
120 |
+
## Model Architecture
|
121 |
+
|
122 |
+
| Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* | Hidden Size |
|
123 |
+
|:----------|:----------|:----------|:----------|:----------|:----------|
|
124 |
+
| 5.7B | 32 | 32 | 4096 | Variable | 4096 | |
|
125 |
+
|
126 |
+
*AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each layer of the model.
|
127 |
+
|
128 |
+
- **Decoder layer:** Varible Grouped Query Attention. Grouped Query Attention (GQA) was introduced in [Ainslie et al., 2023](https://arxiv.org/abs/2305.13245)
|
129 |
+
- **Position Embeddings:** Dynamic NTK Scaling Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864)
|
130 |
+
|
131 |
+
|
132 |
+
### Model Sources
|
133 |
+
|
134 |
+
- **Paper:** [DeciLM Technical Blog](https://deci.ai/blog/decilm-15-times-faster-than-llama2-nas-generated-llm-with-variable-gqa/)
|
135 |
+
- **Demo:** [DeciLM 6B Instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-6b-instruct-Demo/)
|
136 |
+
- **Notebook:** [DeciLM 6B Notebook](https://huggingface.co/Deci/DeciLM-6b-instruct)
|
137 |
+
|
138 |
+
## Uses
|
139 |
+
|
140 |
+
The model is intended for commercial and research use in English and can be fine-tuned for use in other languages.
|
141 |
+
|
142 |
+
## How to Get Started with the Model
|
143 |
+
|
144 |
+
Use the code below to get started with the model.
|
145 |
+
|
146 |
+
```bibtex
|
147 |
+
# pip install -q transformers
|
148 |
+
|
149 |
+
import torch
|
150 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
151 |
+
|
152 |
+
checkpoint = "Deci/DeciLM-6b"
|
153 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
154 |
+
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
156 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device)
|
157 |
+
|
158 |
+
inputs = tokenizer.encode("In a shocking finding, scientists discovered a herd of unicorns living in", return_tensors="pt").to(device)
|
159 |
+
outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95)
|
160 |
+
print(tokenizer.decode(outputs[0]))
|
161 |
+
```
|
162 |
+
|
163 |
+
## Training Details
|
164 |
+
|
165 |
+
DeciLM 6B underwent training utilizing a subset of the SlimPajamas dataset, leveraging advanced proprietary methodologies allowing for fast training.
|
166 |
+
|
167 |
+
## Evaluation
|
168 |
+
|
169 |
+
Below are DeciLM's 6B evaluation results.
|
170 |
+
|
171 |
+
| Average | ARC Challenge* | ARC Easy* | BoolQ | HellaSwag* | LAMBDA OpenAI | OpenBookQA | PIQA | TruthfulQA | Winogrande |
|
172 |
+
|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|
|
173 |
+
| 60.33 | 42.06 | 70.02 | 71.01 | 74.58 | 69.78 | 34 | 77.09 |36.19 | 68.03 |
|
174 |
+
Accuracy-norm score*
|
175 |
+
|
176 |
+
|
177 |
+
### Runtime Benchmarks
|
178 |
+
|
179 |
+
|Inference Tool/Hardware | A10 (tokens/sec) |
|
180 |
+
|:----------|:----------|
|
181 |
+
| HF Inference Endpoints | 652.49 |
|
182 |
+
| Infery LLM | 2,029.6 |
|
183 |
+
|
184 |
+
- Throughput (tokens/sec) - Measured with optimal batch - HF Inference Endpoints BS 64, Infery LLM BS 128
|
185 |
+
|
186 |
+
|
187 |
+
## How to Cite
|
188 |
+
|
189 |
+
Please cite this model using this format.
|
190 |
+
|
191 |
+
```bibtex
|
192 |
+
@misc{DeciFoundationModels,
|
193 |
+
title = {DeciLM},
|
194 |
+
author = {DeciAI Research Team},
|
195 |
+
year = {2023}
|
196 |
+
url={[https://huggingface.co/Deci/DeciLM-6b](https://huggingface.co/Deci/DeciLM-6b)},
|
197 |
+
}
|
198 |
+
```
|