DecoderImmortal commited on
Commit
106b238
·
verified ·
1 Parent(s): 7e45df8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -3
README.md CHANGED
@@ -1,3 +1,101 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # Make Some Noise (MSN) Framework
5
+ Implementation of EMNLP 2024 paper [Make Some Noise: Unlocking Language Model Parallel Inference
6
+ Capability through Noisy Training](https://arxiv.org/pdf/2406.17404).
7
+ [[Github]](https://github.com/wyxstriker/MakeSomeNoiseInference)
8
+
9
+ ## Requirements
10
+ - Environment: We adopt the same environment as used in [Spec-Bench](https://github.com/hemingkx/Spec-Bench) to facilitate a fair and consistent evaluation.
11
+ - Prepared Models: For convenience of testing, we release the weights of both the general-purpose model [[Llama3-8B-MSN](https://huggingface.co/DecoderImmortal/Llama3-8B-MSN)] and the code-specific model [[DeepSeek-Coder-7B-MSN](https://huggingface.co/DecoderImmortal/DeepSeek-Coder-7B-MSN)] trained on MSN as discussed in the paper.
12
+
13
+ ## A minimal implementation of MSN
14
+
15
+ The MSN framework can be easily integrated into the data preprocessing stage of any training script. The entire noise addition process is as follows:
16
+
17
+ ```python
18
+ # L denotes the noise length hyperparameter, which is typically set to 5.
19
+ dataset = [
20
+ {"source_ids": "Query prompt.",
21
+ "input_ids": "Concatenation of the query and response.",
22
+ "output_ids": "Copy of input_ids as label for LM task."}
23
+ ]
24
+ for source_ids, input_ids in dataset:
25
+ start_idx = random.randrange(len(source_ids), len(input_ids)-L)
26
+ for mask_i in range(start_idx, start_idx+L):
27
+ # Noise is added only to the input portion corresponding to the response.
28
+ input_ids[mask_i] = random.choice(input_ids[:mask_i])
29
+
30
+ ```
31
+
32
+ ## TR-Jacobi
33
+
34
+ <div align="center">
35
+ <img src="./pic/tr-jacobi.png" width="50%"/>
36
+ </div>
37
+
38
+ We demonstrate how to use TR-Jacobi to accelerate the MSN-trained model in ```src/inference_msn.py```.
39
+
40
+ ```python
41
+ # jacobi decoding
42
+ spec_res_ids, new_tokens, forward_steps, accpet_list = noise_forward(input_ids.cuda(), model, tokenizer, args.max_new_tokens)
43
+
44
+ print("msn output")
45
+ print(tokenizer.decode(spec_res_ids[0]))
46
+ print("#MTA")
47
+ print(new_tokens/forward_steps)
48
+ print("Accepted Length List")
49
+ print(accpet_list)
50
+
51
+ # msn output
52
+ # <|begin_of_text|><|start_header_id|>system<|end_header_id|>
53
+ # Give me some advices about how to write an academic paper?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
54
+ # 1. Start by researching your topic and gathering relevant information. Make sure to take notes and organize your research in a way that makes sense.
55
+ # ...
56
+ # 8. Submit your paper. Make sure to follow any submission guidelines and make sure to submit your paper on time.<|eot_id|><|eot_id|>.
57
+
58
+ # #MTA
59
+ # 2.2
60
+
61
+ # Accepted Length List
62
+ # [1, 2, 1, 1, 3, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2, 2, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 5, 1, 3, 1, 5, 2, 1, 3, 2, 2, 2, 3, 2, 5, 1, 3, 2, 3, 2, 3, 2, 1, 4, 3, 1, 2, 2, 3, 6, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 1, 4, 2, 1, 2, 2, 2]
63
+ ```
64
+
65
+ Run ```sh run_case.sh``` to obtain the execution process of a test sample.
66
+ The interface design of the entire ```noise_forward``` is kept consistent with Spec-Bench.
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+ ## Citation
75
+ If you find this work is useful for your research, please cite our paper:
76
+
77
+ ```
78
+ @inproceedings{wang-etal-2024-make,
79
+ title = "Make Some Noise: Unlocking Language Model Parallel Inference Capability through Noisy Training",
80
+ author = "Wang, Yixuan and
81
+ Luo, Xianzhen and
82
+ Wei, Fuxuan and
83
+ Liu, Yijun and
84
+ Zhu, Qingfu and
85
+ Zhang, Xuanyu and
86
+ Yang, Qing and
87
+ Xu, Dongliang and
88
+ Che, Wanxiang",
89
+ editor = "Al-Onaizan, Yaser and
90
+ Bansal, Mohit and
91
+ Chen, Yun-Nung",
92
+ booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
93
+ month = nov,
94
+ year = "2024",
95
+ address = "Miami, Florida, USA",
96
+ publisher = "Association for Computational Linguistics",
97
+ url = "https://aclanthology.org/2024.emnlp-main.718/",
98
+ doi = "10.18653/v1/2024.emnlp-main.718",
99
+ pages = "12914--12926",
100
+ }
101
+ ```