DeeOrion commited on
Commit
1c0a5ef
·
1 Parent(s): 578fbbb

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -673.74 +/- 170.17
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e1097e320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e1097e3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e1097e440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e1097e4d0>", "_build": "<function ActorCriticPolicy._build at 0x7f0e1097e560>", "forward": "<function ActorCriticPolicy.forward at 0x7f0e1097e5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e1097e680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0e1097e710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e1097e7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e1097e830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e1097e8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0e109c6900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651923339.9526188, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCAgL19h8Y/5F8ivnGdfb3+veK9WOedvQAAAAAAAAAAZi90Pnq+xD8qlSI/uf4hvqhvhjwCoUs8AAAAAAAAAABNBWS9w260PxR8Nr+tWpW8d4EHPUYsWT0AAAAAAAAAAA3nj71mg60/h9Cavh/dXb4a1Qm91NcbvgAAAAAAAAAAwPywPRQnoT8GKwk9G63dvsxkAD5mPK49AAAAAAAAAAB0PBO/bxMYP5BQRb/ismO/Y5pePuLH9roAAAAAAAAAADPNEL2MO6g/tayivfXrgL7ZhZa9erwjPAAAAAAAAAAA7fvmPntKRz+9XGY/AiZyvwIA7r40sZs8AAAAAAAAAADmnDA9V0agPxXxMT604ui+6+ZaPdbmhz0AAAAAAAAAAEC53b7RryA+0ptKvqG+jr/akuC+K+qLvgAAAAAAAAAA2gmrvTAhlD/W1929EHPNvp1bZr6KXga+AAAAAAAAAABm0ei9/3CQP0u28b6/yTK/F3TCO90Ndr0AAAAAAAAAAK0oVj4wAbY/inQoP1c8ib4aVGa+o8ryvAAAAAAAAAAAAKq9PBSwpj3M3cA+H1Gtv+9DMr+jx9m9AAAAAAAAAACz62i9kVqvP56vJr9GtYW+Nm2XPYCLSj4AAAAAAAAAACr+Jj8/zfI+ZQYRPyaKgr8Ho4M+7gBzPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ/c7FAUiaMCUhpRSlIwBbJRLXIwBdJRHQJGF2ZlWfbt1fZQoaAZoCWgPQwjwiArVTbhwwJSGlFKUaBVLbmgWR0CRhefsu3+ddX2UKGgGaAloD0MI8Q2Fz9ZVbcCUhpRSlGgVS1RoFkdAkYX/J7sv7HV9lChoBmgJaA9DCOGyCpsBclrAlIaUUpRoFUtsaBZHQJGGF3dKujh1fZQoaAZoCWgPQwijBWhbzbNtwJSGlFKUaBVLb2gWR0CRhibwSamXdX2UKGgGaAloD0MIQpWaPVCDZMCUhpRSlGgVS3hoFkdAkYZIfW+XaHV9lChoBmgJaA9DCM7+QLltI2bAlIaUUpRoFUtlaBZHQJGGTWSU1Q91fZQoaAZoCWgPQwgtBg/Tvl9RwJSGlFKUaBVLQWgWR0CRhmSjxkNGdX2UKGgGaAloD0MIJ/VlaacyXcCUhpRSlGgVS1NoFkdAkYaSJ0nw5XV9lChoBmgJaA9DCJnxttLrfWTAlIaUUpRoFUuGaBZHQJGGqRV6u4h1fZQoaAZoCWgPQwg7qpog6ghZwJSGlFKUaBVLTWgWR0CRhrt5UtI1dX2UKGgGaAloD0MIAHDs2XNZFECUhpRSlGgVS2poFkdAkYbWNBF/hHV9lChoBmgJaA9DCO4E+6+z9XDAlIaUUpRoFUtwaBZHQJGG8gEEC/51fZQoaAZoCWgPQwjkSj0LQhU4wJSGlFKUaBVLRGgWR0CRhvfYzzmPdX2UKGgGaAloD0MI+S06WWopXMCUhpRSlGgVS1BoFkdAkYcVrl/6PHV9lChoBmgJaA9DCGtgqwSLm1nAlIaUUpRoFUtsaBZHQJGHLAsTWXl1fZQoaAZoCWgPQwiO6J51jQVTwJSGlFKUaBVLhWgWR0CRh1nTy8SPdX2UKGgGaAloD0MIXfxtT5DlXsCUhpRSlGgVS3poFkdAkYdh4Uvf0nV9lChoBmgJaA9DCIDSUKOQqFnAlIaUUpRoFUtsaBZHQJGHoI9kjHJ1fZQoaAZoCWgPQwh551CGagd0wJSGlFKUaBVLZ2gWR0CRh6dEsrd4dX2UKGgGaAloD0MIB9Dv+zehWMCUhpRSlGgVS1FoFkdAkYfmldkauXV9lChoBmgJaA9DCCBe1y/YylHAlIaUUpRoFUtWaBZHQJGH8AT7EYR1fZQoaAZoCWgPQwixGeCCbAtXwJSGlFKUaBVLb2gWR0CRh/osZpBYdX2UKGgGaAloD0MIz72HS47zSMCUhpRSlGgVS25oFkdAkYgOGfwqiHV9lChoBmgJaA9DCM+/XfbrhWrAlIaUUpRoFUt6aBZHQJGIIAAAAAB1fZQoaAZoCWgPQwiIghlTsK1hwJSGlFKUaBVLTWgWR0CRiDTXrdFfdX2UKGgGaAloD0MIe/SG+8idU8CUhpRSlGgVS5JoFkdAkYhYfKZDzHV9lChoBmgJaA9DCIbKv5bX0GvAlIaUUpRoFUtxaBZHQJGIoVxjriV1fZQoaAZoCWgPQwifWKfK9y9YwJSGlFKUaBVLQ2gWR0CRiKdGAkLQdX2UKGgGaAloD0MIya1Jt+WYcMCUhpRSlGgVS3ZoFkdAkYi6IFeOXHV9lChoBmgJaA9DCNEeL6RDXm3AlIaUUpRoFUuOaBZHQJGIvdRBNVR1fZQoaAZoCWgPQwgyjpHsEchnwJSGlFKUaBVLhGgWR0CRiM7bcoH+dX2UKGgGaAloD0MIGoaPiCn4ccCUhpRSlGgVS3doFkdAkYj1b7j1f3V9lChoBmgJaA9DCFNeK6G7h1jAlIaUUpRoFUtCaBZHQJGI/4tYjjd1fZQoaAZoCWgPQwgDd6BOeS5pwJSGlFKUaBVLbmgWR0CRiQtSQ5mzdX2UKGgGaAloD0MIlIRE2sYWeMCUhpRSlGgVS3loFkdAkYksXaakRHV9lChoBmgJaA9DCG1YU1kUylLAlIaUUpRoFUtWaBZHQJGJWvQnhKl1fZQoaAZoCWgPQwh720yFeMBXwJSGlFKUaBVLVWgWR0CRiWjqv/zbdX2UKGgGaAloD0MI/WfNj7+SUMCUhpRSlGgVS1loFkdAkYmMfNiYs3V9lChoBmgJaA9DCNY3MLlRpkrAlIaUUpRoFUuCaBZHQJGJmvkili11fZQoaAZoCWgPQwjnAMEcPR5IwJSGlFKUaBVLdmgWR0CRia0HQhOhdX2UKGgGaAloD0MIgLVq1wS+Z8CUhpRSlGgVS0loFkdAkYm6AavRq3V9lChoBmgJaA9DCOPdkbHaJFbAlIaUUpRoFUt7aBZHQJGJyDpTuOV1fZQoaAZoCWgPQwgdWfllsFlgwJSGlFKUaBVLPmgWR0CRie704BFNdX2UKGgGaAloD0MINLqD2JkkWsCUhpRSlGgVS1NoFkdAkYnzHn2ZiXV9lChoBmgJaA9DCNB8zt2u+FHAlIaUUpRoFUtRaBZHQJGJ+79Q40d1fZQoaAZoCWgPQwizeRwG80lYwJSGlFKUaBVLYGgWR0CRigmMwUQDdX2UKGgGaAloD0MIrye6LnxEdcCUhpRSlGgVS3VoFkdAkYoYOc2BKHV9lChoBmgJaA9DCOoJSzwgDnDAlIaUUpRoFUtcaBZHQJGKSRvFWGR1fZQoaAZoCWgPQwhcjexKy1QywJSGlFKUaBVLZmgWR0CRinYHPeHjdX2UKGgGaAloD0MIEsDN4sUOXMCUhpRSlGgVS1xoFkdAkYquN5t3wHV9lChoBmgJaA9DCJ9VZkrriFnAlIaUUpRoFUtuaBZHQJGKwjxCpm51fZQoaAZoCWgPQwhyiLg5lbpNwJSGlFKUaBVLWGgWR0CRitMl1KXfdX2UKGgGaAloD0MIc3/1uG8NQ8CUhpRSlGgVS2VoFkdAkYrgdGRV63V9lChoBmgJaA9DCH3NctnoMnfAlIaUUpRoFUuVaBZHQJGK5syi22J1fZQoaAZoCWgPQwhzuiwmNt1WwJSGlFKUaBVLYWgWR0CRiwMsH0K7dX2UKGgGaAloD0MI3rBtUWYlSMCUhpRSlGgVS1poFkdAkYsI150KZ3V9lChoBmgJaA9DCOJyvALRc1PAlIaUUpRoFUtgaBZHQJGLEXbdrO91fZQoaAZoCWgPQwgAqrhxC6RgwJSGlFKUaBVLbWgWR0CRi40QbuMNdX2UKGgGaAloD0MI/3ivWpkQUcCUhpRSlGgVS39oFkdAkYulj7Q9inV9lChoBmgJaA9DCL72zJIAjWLAlIaUUpRoFUtMaBZHQJGL6CiAUcp1fZQoaAZoCWgPQwg+eO3SRiB1wJSGlFKUaBVLh2gWR0CRi/FHrhR7dX2UKGgGaAloD0MIRzgteFFPb8CUhpRSlGgVS3xoFkdAkYvxxDLKWHV9lChoBmgJaA9DCAaFQZlGd1vAlIaUUpRoFUuJaBZHQJGME/IKc/d1fZQoaAZoCWgPQwhBfcucLk5iwJSGlFKUaBVLT2gWR0CRjBQ0XP7fdX2UKGgGaAloD0MI9fOmIhXdVsCUhpRSlGgVS0toFkdAkYwn9Nvfj3V9lChoBmgJaA9DCJnyIagarGHAlIaUUpRoFUtUaBZHQJGMLWK/Efl1fZQoaAZoCWgPQwgbDksDP+pCwJSGlFKUaBVLnWgWR0CRjFJ0GNaRdX2UKGgGaAloD0MI8NqlDYdPccCUhpRSlGgVS3JoFkdAkYxtELH+63V9lChoBmgJaA9DCPQau0T1fFPAlIaUUpRoFUtLaBZHQJGMvQWvbGp1fZQoaAZoCWgPQwhFoWXdP0lqwJSGlFKUaBVLgmgWR0CRjNdGy5ZsdX2UKGgGaAloD0MI5xpmaDxqasCUhpRSlGgVS65oFkdAkYz04BFNL3V9lChoBmgJaA9DCIhGdxD7QHDAlIaUUpRoFUukaBZHQJGM/y9VWCF1fZQoaAZoCWgPQwj4xhAAHLBhwJSGlFKUaBVLfGgWR0CRjQOB19v1dX2UKGgGaAloD0MI5sx2hb4+aMCUhpRSlGgVS4RoFkdAkY0XR5TqB3V9lChoBmgJaA9DCP2DSIYcvVPAlIaUUpRoFUtQaBZHQJGNLfZVXFN1fZQoaAZoCWgPQwiEEmba/r1uwJSGlFKUaBVLdmgWR0CRjXwudwvQdX2UKGgGaAloD0MIjPLMy+F6dsCUhpRSlGgVS2poFkdAkY25QUHpr3V9lChoBmgJaA9DCAnh0cYRzUbAlIaUUpRoFUtTaBZHQJGNt5/smfJ1fZQoaAZoCWgPQwgUW0HTEqFhwJSGlFKUaBVLc2gWR0CRjbvRJEpidX2UKGgGaAloD0MIniPyXUpXccCUhpRSlGgVS2ZoFkdAkY3Efs/puHV9lChoBmgJaA9DCKt14nI8/23AlIaUUpRoFUt7aBZHQJGN2s8xKxt1fZQoaAZoCWgPQwhEa0Wb49JcwJSGlFKUaBVLaGgWR0CRjfGdZq20dX2UKGgGaAloD0MIuf3yyYpuUcCUhpRSlGgVS0toFkdAkY36qCHymXV9lChoBmgJaA9DCKa4quy7DljAlIaUUpRoFUtIaBZHQJGOFpDeCTV1fZQoaAZoCWgPQwhvERjrmyRkwJSGlFKUaBVLWmgWR0CRjhsEq2BrdX2UKGgGaAloD0MIVyHlJ1V3asCUhpRSlGgVS4doFkdAkY4qTwDvE3V9lChoBmgJaA9DCK6gaYmVjVzAlIaUUpRoFUtTaBZHQJGOPaBZpzt1fZQoaAZoCWgPQwhORL+2/upqwJSGlFKUaBVLjGgWR0CRjlEAo5PudX2UKGgGaAloD0MIl8RZEbWEc8CUhpRSlGgVS29oFkdAkY6aXjU/fXV9lChoBmgJaA9DCDeKrDUUHGHAlIaUUpRoFUt2aBZHQJGO1i7TUiJ1fZQoaAZoCWgPQwg9mBQfn/5bwJSGlFKUaBVLS2gWR0CRjtKw6hg3dX2UKGgGaAloD0MIj8L1KFxnUsCUhpRSlGgVS19oFkdAkY7mcz67/XV9lChoBmgJaA9DCCB7vfvj/VDAlIaUUpRoFUtSaBZHQJGO8Iv8IiV1fZQoaAZoCWgPQwjKGB9mL11MwJSGlFKUaBVLVmgWR0CRjwGpMpPRdX2UKGgGaAloD0MIAg6hSs1VUMCUhpRSlGgVS05oFkdAkY8lY6nzhHV9lChoBmgJaA9DCIfguIwbqmDAlIaUUpRoFUtWaBZHQJGPJQwblzV1fZQoaAZoCWgPQwiTVnxD4cMSQJSGlFKUaBVLhmgWR0CRjzC2tuDSdX2UKGgGaAloD0MIZMvydRm2WMCUhpRSlGgVS1NoFkdAkY9X6/IsAnV9lChoBmgJaA9DCG+6ZYf4N0nAlIaUUpRoFUtgaBZHQJGPYL4N7Sl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLanderv2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af3a22a9a5f567a66b3d32cab0720170faa73b69816099681877b15150c1a046
3
+ size 143911
ppo-LunarLanderv2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLanderv2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e1097e320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e1097e3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e1097e440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e1097e4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0e1097e560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0e1097e5f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e1097e680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0e1097e710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e1097e7a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e1097e830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e1097e8c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0e109c6900>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 65536,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651923339.9526188,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCAgL19h8Y/5F8ivnGdfb3+veK9WOedvQAAAAAAAAAAZi90Pnq+xD8qlSI/uf4hvqhvhjwCoUs8AAAAAAAAAABNBWS9w260PxR8Nr+tWpW8d4EHPUYsWT0AAAAAAAAAAA3nj71mg60/h9Cavh/dXb4a1Qm91NcbvgAAAAAAAAAAwPywPRQnoT8GKwk9G63dvsxkAD5mPK49AAAAAAAAAAB0PBO/bxMYP5BQRb/ismO/Y5pePuLH9roAAAAAAAAAADPNEL2MO6g/tayivfXrgL7ZhZa9erwjPAAAAAAAAAAA7fvmPntKRz+9XGY/AiZyvwIA7r40sZs8AAAAAAAAAADmnDA9V0agPxXxMT604ui+6+ZaPdbmhz0AAAAAAAAAAEC53b7RryA+0ptKvqG+jr/akuC+K+qLvgAAAAAAAAAA2gmrvTAhlD/W1929EHPNvp1bZr6KXga+AAAAAAAAAABm0ei9/3CQP0u28b6/yTK/F3TCO90Ndr0AAAAAAAAAAK0oVj4wAbY/inQoP1c8ib4aVGa+o8ryvAAAAAAAAAAAAKq9PBSwpj3M3cA+H1Gtv+9DMr+jx9m9AAAAAAAAAACz62i9kVqvP56vJr9GtYW+Nm2XPYCLSj4AAAAAAAAAACr+Jj8/zfI+ZQYRPyaKgr8Ho4M+7gBzPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.3107200000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ/c7FAUiaMCUhpRSlIwBbJRLXIwBdJRHQJGF2ZlWfbt1fZQoaAZoCWgPQwjwiArVTbhwwJSGlFKUaBVLbmgWR0CRhefsu3+ddX2UKGgGaAloD0MI8Q2Fz9ZVbcCUhpRSlGgVS1RoFkdAkYX/J7sv7HV9lChoBmgJaA9DCOGyCpsBclrAlIaUUpRoFUtsaBZHQJGGF3dKujh1fZQoaAZoCWgPQwijBWhbzbNtwJSGlFKUaBVLb2gWR0CRhibwSamXdX2UKGgGaAloD0MIQpWaPVCDZMCUhpRSlGgVS3hoFkdAkYZIfW+XaHV9lChoBmgJaA9DCM7+QLltI2bAlIaUUpRoFUtlaBZHQJGGTWSU1Q91fZQoaAZoCWgPQwgtBg/Tvl9RwJSGlFKUaBVLQWgWR0CRhmSjxkNGdX2UKGgGaAloD0MIJ/VlaacyXcCUhpRSlGgVS1NoFkdAkYaSJ0nw5XV9lChoBmgJaA9DCJnxttLrfWTAlIaUUpRoFUuGaBZHQJGGqRV6u4h1fZQoaAZoCWgPQwg7qpog6ghZwJSGlFKUaBVLTWgWR0CRhrt5UtI1dX2UKGgGaAloD0MIAHDs2XNZFECUhpRSlGgVS2poFkdAkYbWNBF/hHV9lChoBmgJaA9DCO4E+6+z9XDAlIaUUpRoFUtwaBZHQJGG8gEEC/51fZQoaAZoCWgPQwjkSj0LQhU4wJSGlFKUaBVLRGgWR0CRhvfYzzmPdX2UKGgGaAloD0MI+S06WWopXMCUhpRSlGgVS1BoFkdAkYcVrl/6PHV9lChoBmgJaA9DCGtgqwSLm1nAlIaUUpRoFUtsaBZHQJGHLAsTWXl1fZQoaAZoCWgPQwiO6J51jQVTwJSGlFKUaBVLhWgWR0CRh1nTy8SPdX2UKGgGaAloD0MIXfxtT5DlXsCUhpRSlGgVS3poFkdAkYdh4Uvf0nV9lChoBmgJaA9DCIDSUKOQqFnAlIaUUpRoFUtsaBZHQJGHoI9kjHJ1fZQoaAZoCWgPQwh551CGagd0wJSGlFKUaBVLZ2gWR0CRh6dEsrd4dX2UKGgGaAloD0MIB9Dv+zehWMCUhpRSlGgVS1FoFkdAkYfmldkauXV9lChoBmgJaA9DCCBe1y/YylHAlIaUUpRoFUtWaBZHQJGH8AT7EYR1fZQoaAZoCWgPQwixGeCCbAtXwJSGlFKUaBVLb2gWR0CRh/osZpBYdX2UKGgGaAloD0MIz72HS47zSMCUhpRSlGgVS25oFkdAkYgOGfwqiHV9lChoBmgJaA9DCM+/XfbrhWrAlIaUUpRoFUt6aBZHQJGIIAAAAAB1fZQoaAZoCWgPQwiIghlTsK1hwJSGlFKUaBVLTWgWR0CRiDTXrdFfdX2UKGgGaAloD0MIe/SG+8idU8CUhpRSlGgVS5JoFkdAkYhYfKZDzHV9lChoBmgJaA9DCIbKv5bX0GvAlIaUUpRoFUtxaBZHQJGIoVxjriV1fZQoaAZoCWgPQwifWKfK9y9YwJSGlFKUaBVLQ2gWR0CRiKdGAkLQdX2UKGgGaAloD0MIya1Jt+WYcMCUhpRSlGgVS3ZoFkdAkYi6IFeOXHV9lChoBmgJaA9DCNEeL6RDXm3AlIaUUpRoFUuOaBZHQJGIvdRBNVR1fZQoaAZoCWgPQwgyjpHsEchnwJSGlFKUaBVLhGgWR0CRiM7bcoH+dX2UKGgGaAloD0MIGoaPiCn4ccCUhpRSlGgVS3doFkdAkYj1b7j1f3V9lChoBmgJaA9DCFNeK6G7h1jAlIaUUpRoFUtCaBZHQJGI/4tYjjd1fZQoaAZoCWgPQwgDd6BOeS5pwJSGlFKUaBVLbmgWR0CRiQtSQ5mzdX2UKGgGaAloD0MIlIRE2sYWeMCUhpRSlGgVS3loFkdAkYksXaakRHV9lChoBmgJaA9DCG1YU1kUylLAlIaUUpRoFUtWaBZHQJGJWvQnhKl1fZQoaAZoCWgPQwh720yFeMBXwJSGlFKUaBVLVWgWR0CRiWjqv/zbdX2UKGgGaAloD0MI/WfNj7+SUMCUhpRSlGgVS1loFkdAkYmMfNiYs3V9lChoBmgJaA9DCNY3MLlRpkrAlIaUUpRoFUuCaBZHQJGJmvkili11fZQoaAZoCWgPQwjnAMEcPR5IwJSGlFKUaBVLdmgWR0CRia0HQhOhdX2UKGgGaAloD0MIgLVq1wS+Z8CUhpRSlGgVS0loFkdAkYm6AavRq3V9lChoBmgJaA9DCOPdkbHaJFbAlIaUUpRoFUt7aBZHQJGJyDpTuOV1fZQoaAZoCWgPQwgdWfllsFlgwJSGlFKUaBVLPmgWR0CRie704BFNdX2UKGgGaAloD0MINLqD2JkkWsCUhpRSlGgVS1NoFkdAkYnzHn2ZiXV9lChoBmgJaA9DCNB8zt2u+FHAlIaUUpRoFUtRaBZHQJGJ+79Q40d1fZQoaAZoCWgPQwizeRwG80lYwJSGlFKUaBVLYGgWR0CRigmMwUQDdX2UKGgGaAloD0MIrye6LnxEdcCUhpRSlGgVS3VoFkdAkYoYOc2BKHV9lChoBmgJaA9DCOoJSzwgDnDAlIaUUpRoFUtcaBZHQJGKSRvFWGR1fZQoaAZoCWgPQwhcjexKy1QywJSGlFKUaBVLZmgWR0CRinYHPeHjdX2UKGgGaAloD0MIEsDN4sUOXMCUhpRSlGgVS1xoFkdAkYquN5t3wHV9lChoBmgJaA9DCJ9VZkrriFnAlIaUUpRoFUtuaBZHQJGKwjxCpm51fZQoaAZoCWgPQwhyiLg5lbpNwJSGlFKUaBVLWGgWR0CRitMl1KXfdX2UKGgGaAloD0MIc3/1uG8NQ8CUhpRSlGgVS2VoFkdAkYrgdGRV63V9lChoBmgJaA9DCH3NctnoMnfAlIaUUpRoFUuVaBZHQJGK5syi22J1fZQoaAZoCWgPQwhzuiwmNt1WwJSGlFKUaBVLYWgWR0CRiwMsH0K7dX2UKGgGaAloD0MI3rBtUWYlSMCUhpRSlGgVS1poFkdAkYsI150KZ3V9lChoBmgJaA9DCOJyvALRc1PAlIaUUpRoFUtgaBZHQJGLEXbdrO91fZQoaAZoCWgPQwgAqrhxC6RgwJSGlFKUaBVLbWgWR0CRi40QbuMNdX2UKGgGaAloD0MI/3ivWpkQUcCUhpRSlGgVS39oFkdAkYulj7Q9inV9lChoBmgJaA9DCL72zJIAjWLAlIaUUpRoFUtMaBZHQJGL6CiAUcp1fZQoaAZoCWgPQwg+eO3SRiB1wJSGlFKUaBVLh2gWR0CRi/FHrhR7dX2UKGgGaAloD0MIRzgteFFPb8CUhpRSlGgVS3xoFkdAkYvxxDLKWHV9lChoBmgJaA9DCAaFQZlGd1vAlIaUUpRoFUuJaBZHQJGME/IKc/d1fZQoaAZoCWgPQwhBfcucLk5iwJSGlFKUaBVLT2gWR0CRjBQ0XP7fdX2UKGgGaAloD0MI9fOmIhXdVsCUhpRSlGgVS0toFkdAkYwn9Nvfj3V9lChoBmgJaA9DCJnyIagarGHAlIaUUpRoFUtUaBZHQJGMLWK/Efl1fZQoaAZoCWgPQwgbDksDP+pCwJSGlFKUaBVLnWgWR0CRjFJ0GNaRdX2UKGgGaAloD0MI8NqlDYdPccCUhpRSlGgVS3JoFkdAkYxtELH+63V9lChoBmgJaA9DCPQau0T1fFPAlIaUUpRoFUtLaBZHQJGMvQWvbGp1fZQoaAZoCWgPQwhFoWXdP0lqwJSGlFKUaBVLgmgWR0CRjNdGy5ZsdX2UKGgGaAloD0MI5xpmaDxqasCUhpRSlGgVS65oFkdAkYz04BFNL3V9lChoBmgJaA9DCIhGdxD7QHDAlIaUUpRoFUukaBZHQJGM/y9VWCF1fZQoaAZoCWgPQwj4xhAAHLBhwJSGlFKUaBVLfGgWR0CRjQOB19v1dX2UKGgGaAloD0MI5sx2hb4+aMCUhpRSlGgVS4RoFkdAkY0XR5TqB3V9lChoBmgJaA9DCP2DSIYcvVPAlIaUUpRoFUtQaBZHQJGNLfZVXFN1fZQoaAZoCWgPQwiEEmba/r1uwJSGlFKUaBVLdmgWR0CRjXwudwvQdX2UKGgGaAloD0MIjPLMy+F6dsCUhpRSlGgVS2poFkdAkY25QUHpr3V9lChoBmgJaA9DCAnh0cYRzUbAlIaUUpRoFUtTaBZHQJGNt5/smfJ1fZQoaAZoCWgPQwgUW0HTEqFhwJSGlFKUaBVLc2gWR0CRjbvRJEpidX2UKGgGaAloD0MIniPyXUpXccCUhpRSlGgVS2ZoFkdAkY3Efs/puHV9lChoBmgJaA9DCKt14nI8/23AlIaUUpRoFUt7aBZHQJGN2s8xKxt1fZQoaAZoCWgPQwhEa0Wb49JcwJSGlFKUaBVLaGgWR0CRjfGdZq20dX2UKGgGaAloD0MIuf3yyYpuUcCUhpRSlGgVS0toFkdAkY36qCHymXV9lChoBmgJaA9DCKa4quy7DljAlIaUUpRoFUtIaBZHQJGOFpDeCTV1fZQoaAZoCWgPQwhvERjrmyRkwJSGlFKUaBVLWmgWR0CRjhsEq2BrdX2UKGgGaAloD0MIVyHlJ1V3asCUhpRSlGgVS4doFkdAkY4qTwDvE3V9lChoBmgJaA9DCK6gaYmVjVzAlIaUUpRoFUtTaBZHQJGOPaBZpzt1fZQoaAZoCWgPQwhORL+2/upqwJSGlFKUaBVLjGgWR0CRjlEAo5PudX2UKGgGaAloD0MIl8RZEbWEc8CUhpRSlGgVS29oFkdAkY6aXjU/fXV9lChoBmgJaA9DCDeKrDUUHGHAlIaUUpRoFUt2aBZHQJGO1i7TUiJ1fZQoaAZoCWgPQwg9mBQfn/5bwJSGlFKUaBVLS2gWR0CRjtKw6hg3dX2UKGgGaAloD0MIj8L1KFxnUsCUhpRSlGgVS19oFkdAkY7mcz67/XV9lChoBmgJaA9DCCB7vfvj/VDAlIaUUpRoFUtSaBZHQJGO8Iv8IiV1fZQoaAZoCWgPQwjKGB9mL11MwJSGlFKUaBVLVmgWR0CRjwGpMpPRdX2UKGgGaAloD0MIAg6hSs1VUMCUhpRSlGgVS05oFkdAkY8lY6nzhHV9lChoBmgJaA9DCIfguIwbqmDAlIaUUpRoFUtWaBZHQJGPJQwblzV1fZQoaAZoCWgPQwiTVnxD4cMSQJSGlFKUaBVLhmgWR0CRjzC2tuDSdX2UKGgGaAloD0MIZMvydRm2WMCUhpRSlGgVS1NoFkdAkY9X6/IsAnV9lChoBmgJaA9DCG+6ZYf4N0nAlIaUUpRoFUtgaBZHQJGPYL4N7Sl1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 16,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLanderv2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a46e4992340cdf5563c13661adbc206efcae595adb1b23fc6ec552f19113a3f
3
+ size 84829
ppo-LunarLanderv2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:165bb7e549a95dc7145194f3485bb9db357153029804795f3109a186e62525c2
3
+ size 43201
ppo-LunarLanderv2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLanderv2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cec0e50aa50abb03c5cab6f312caec46189724520bb29269bc334ed900012481
3
+ size 97714
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -673.7385801882483, "std_reward": 170.1709289844151, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T11:46:45.129387"}