Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLanderv2.zip +3 -0
- ppo-LunarLanderv2/_stable_baselines3_version +1 -0
- ppo-LunarLanderv2/data +94 -0
- ppo-LunarLanderv2/policy.optimizer.pth +3 -0
- ppo-LunarLanderv2/policy.pth +3 -0
- ppo-LunarLanderv2/pytorch_variables.pth +3 -0
- ppo-LunarLanderv2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -673.74 +/- 170.17
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e1097e320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e1097e3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e1097e440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e1097e4d0>", "_build": "<function ActorCriticPolicy._build at 0x7f0e1097e560>", "forward": "<function ActorCriticPolicy.forward at 0x7f0e1097e5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e1097e680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0e1097e710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e1097e7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e1097e830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e1097e8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0e109c6900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651923339.9526188, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCAgL19h8Y/5F8ivnGdfb3+veK9WOedvQAAAAAAAAAAZi90Pnq+xD8qlSI/uf4hvqhvhjwCoUs8AAAAAAAAAABNBWS9w260PxR8Nr+tWpW8d4EHPUYsWT0AAAAAAAAAAA3nj71mg60/h9Cavh/dXb4a1Qm91NcbvgAAAAAAAAAAwPywPRQnoT8GKwk9G63dvsxkAD5mPK49AAAAAAAAAAB0PBO/bxMYP5BQRb/ismO/Y5pePuLH9roAAAAAAAAAADPNEL2MO6g/tayivfXrgL7ZhZa9erwjPAAAAAAAAAAA7fvmPntKRz+9XGY/AiZyvwIA7r40sZs8AAAAAAAAAADmnDA9V0agPxXxMT604ui+6+ZaPdbmhz0AAAAAAAAAAEC53b7RryA+0ptKvqG+jr/akuC+K+qLvgAAAAAAAAAA2gmrvTAhlD/W1929EHPNvp1bZr6KXga+AAAAAAAAAABm0ei9/3CQP0u28b6/yTK/F3TCO90Ndr0AAAAAAAAAAK0oVj4wAbY/inQoP1c8ib4aVGa+o8ryvAAAAAAAAAAAAKq9PBSwpj3M3cA+H1Gtv+9DMr+jx9m9AAAAAAAAAACz62i9kVqvP56vJr9GtYW+Nm2XPYCLSj4AAAAAAAAAACr+Jj8/zfI+ZQYRPyaKgr8Ho4M+7gBzPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ/c7FAUiaMCUhpRSlIwBbJRLXIwBdJRHQJGF2ZlWfbt1fZQoaAZoCWgPQwjwiArVTbhwwJSGlFKUaBVLbmgWR0CRhefsu3+ddX2UKGgGaAloD0MI8Q2Fz9ZVbcCUhpRSlGgVS1RoFkdAkYX/J7sv7HV9lChoBmgJaA9DCOGyCpsBclrAlIaUUpRoFUtsaBZHQJGGF3dKujh1fZQoaAZoCWgPQwijBWhbzbNtwJSGlFKUaBVLb2gWR0CRhibwSamXdX2UKGgGaAloD0MIQpWaPVCDZMCUhpRSlGgVS3hoFkdAkYZIfW+XaHV9lChoBmgJaA9DCM7+QLltI2bAlIaUUpRoFUtlaBZHQJGGTWSU1Q91fZQoaAZoCWgPQwgtBg/Tvl9RwJSGlFKUaBVLQWgWR0CRhmSjxkNGdX2UKGgGaAloD0MIJ/VlaacyXcCUhpRSlGgVS1NoFkdAkYaSJ0nw5XV9lChoBmgJaA9DCJnxttLrfWTAlIaUUpRoFUuGaBZHQJGGqRV6u4h1fZQoaAZoCWgPQwg7qpog6ghZwJSGlFKUaBVLTWgWR0CRhrt5UtI1dX2UKGgGaAloD0MIAHDs2XNZFECUhpRSlGgVS2poFkdAkYbWNBF/hHV9lChoBmgJaA9DCO4E+6+z9XDAlIaUUpRoFUtwaBZHQJGG8gEEC/51fZQoaAZoCWgPQwjkSj0LQhU4wJSGlFKUaBVLRGgWR0CRhvfYzzmPdX2UKGgGaAloD0MI+S06WWopXMCUhpRSlGgVS1BoFkdAkYcVrl/6PHV9lChoBmgJaA9DCGtgqwSLm1nAlIaUUpRoFUtsaBZHQJGHLAsTWXl1fZQoaAZoCWgPQwiO6J51jQVTwJSGlFKUaBVLhWgWR0CRh1nTy8SPdX2UKGgGaAloD0MIXfxtT5DlXsCUhpRSlGgVS3poFkdAkYdh4Uvf0nV9lChoBmgJaA9DCIDSUKOQqFnAlIaUUpRoFUtsaBZHQJGHoI9kjHJ1fZQoaAZoCWgPQwh551CGagd0wJSGlFKUaBVLZ2gWR0CRh6dEsrd4dX2UKGgGaAloD0MIB9Dv+zehWMCUhpRSlGgVS1FoFkdAkYfmldkauXV9lChoBmgJaA9DCCBe1y/YylHAlIaUUpRoFUtWaBZHQJGH8AT7EYR1fZQoaAZoCWgPQwixGeCCbAtXwJSGlFKUaBVLb2gWR0CRh/osZpBYdX2UKGgGaAloD0MIz72HS47zSMCUhpRSlGgVS25oFkdAkYgOGfwqiHV9lChoBmgJaA9DCM+/XfbrhWrAlIaUUpRoFUt6aBZHQJGIIAAAAAB1fZQoaAZoCWgPQwiIghlTsK1hwJSGlFKUaBVLTWgWR0CRiDTXrdFfdX2UKGgGaAloD0MIe/SG+8idU8CUhpRSlGgVS5JoFkdAkYhYfKZDzHV9lChoBmgJaA9DCIbKv5bX0GvAlIaUUpRoFUtxaBZHQJGIoVxjriV1fZQoaAZoCWgPQwifWKfK9y9YwJSGlFKUaBVLQ2gWR0CRiKdGAkLQdX2UKGgGaAloD0MIya1Jt+WYcMCUhpRSlGgVS3ZoFkdAkYi6IFeOXHV9lChoBmgJaA9DCNEeL6RDXm3AlIaUUpRoFUuOaBZHQJGIvdRBNVR1fZQoaAZoCWgPQwgyjpHsEchnwJSGlFKUaBVLhGgWR0CRiM7bcoH+dX2UKGgGaAloD0MIGoaPiCn4ccCUhpRSlGgVS3doFkdAkYj1b7j1f3V9lChoBmgJaA9DCFNeK6G7h1jAlIaUUpRoFUtCaBZHQJGI/4tYjjd1fZQoaAZoCWgPQwgDd6BOeS5pwJSGlFKUaBVLbmgWR0CRiQtSQ5mzdX2UKGgGaAloD0MIlIRE2sYWeMCUhpRSlGgVS3loFkdAkYksXaakRHV9lChoBmgJaA9DCG1YU1kUylLAlIaUUpRoFUtWaBZHQJGJWvQnhKl1fZQoaAZoCWgPQwh720yFeMBXwJSGlFKUaBVLVWgWR0CRiWjqv/zbdX2UKGgGaAloD0MI/WfNj7+SUMCUhpRSlGgVS1loFkdAkYmMfNiYs3V9lChoBmgJaA9DCNY3MLlRpkrAlIaUUpRoFUuCaBZHQJGJmvkili11fZQoaAZoCWgPQwjnAMEcPR5IwJSGlFKUaBVLdmgWR0CRia0HQhOhdX2UKGgGaAloD0MIgLVq1wS+Z8CUhpRSlGgVS0loFkdAkYm6AavRq3V9lChoBmgJaA9DCOPdkbHaJFbAlIaUUpRoFUt7aBZHQJGJyDpTuOV1fZQoaAZoCWgPQwgdWfllsFlgwJSGlFKUaBVLPmgWR0CRie704BFNdX2UKGgGaAloD0MINLqD2JkkWsCUhpRSlGgVS1NoFkdAkYnzHn2ZiXV9lChoBmgJaA9DCNB8zt2u+FHAlIaUUpRoFUtRaBZHQJGJ+79Q40d1fZQoaAZoCWgPQwizeRwG80lYwJSGlFKUaBVLYGgWR0CRigmMwUQDdX2UKGgGaAloD0MIrye6LnxEdcCUhpRSlGgVS3VoFkdAkYoYOc2BKHV9lChoBmgJaA9DCOoJSzwgDnDAlIaUUpRoFUtcaBZHQJGKSRvFWGR1fZQoaAZoCWgPQwhcjexKy1QywJSGlFKUaBVLZmgWR0CRinYHPeHjdX2UKGgGaAloD0MIEsDN4sUOXMCUhpRSlGgVS1xoFkdAkYquN5t3wHV9lChoBmgJaA9DCJ9VZkrriFnAlIaUUpRoFUtuaBZHQJGKwjxCpm51fZQoaAZoCWgPQwhyiLg5lbpNwJSGlFKUaBVLWGgWR0CRitMl1KXfdX2UKGgGaAloD0MIc3/1uG8NQ8CUhpRSlGgVS2VoFkdAkYrgdGRV63V9lChoBmgJaA9DCH3NctnoMnfAlIaUUpRoFUuVaBZHQJGK5syi22J1fZQoaAZoCWgPQwhzuiwmNt1WwJSGlFKUaBVLYWgWR0CRiwMsH0K7dX2UKGgGaAloD0MI3rBtUWYlSMCUhpRSlGgVS1poFkdAkYsI150KZ3V9lChoBmgJaA9DCOJyvALRc1PAlIaUUpRoFUtgaBZHQJGLEXbdrO91fZQoaAZoCWgPQwgAqrhxC6RgwJSGlFKUaBVLbWgWR0CRi40QbuMNdX2UKGgGaAloD0MI/3ivWpkQUcCUhpRSlGgVS39oFkdAkYulj7Q9inV9lChoBmgJaA9DCL72zJIAjWLAlIaUUpRoFUtMaBZHQJGL6CiAUcp1fZQoaAZoCWgPQwg+eO3SRiB1wJSGlFKUaBVLh2gWR0CRi/FHrhR7dX2UKGgGaAloD0MIRzgteFFPb8CUhpRSlGgVS3xoFkdAkYvxxDLKWHV9lChoBmgJaA9DCAaFQZlGd1vAlIaUUpRoFUuJaBZHQJGME/IKc/d1fZQoaAZoCWgPQwhBfcucLk5iwJSGlFKUaBVLT2gWR0CRjBQ0XP7fdX2UKGgGaAloD0MI9fOmIhXdVsCUhpRSlGgVS0toFkdAkYwn9Nvfj3V9lChoBmgJaA9DCJnyIagarGHAlIaUUpRoFUtUaBZHQJGMLWK/Efl1fZQoaAZoCWgPQwgbDksDP+pCwJSGlFKUaBVLnWgWR0CRjFJ0GNaRdX2UKGgGaAloD0MI8NqlDYdPccCUhpRSlGgVS3JoFkdAkYxtELH+63V9lChoBmgJaA9DCPQau0T1fFPAlIaUUpRoFUtLaBZHQJGMvQWvbGp1fZQoaAZoCWgPQwhFoWXdP0lqwJSGlFKUaBVLgmgWR0CRjNdGy5ZsdX2UKGgGaAloD0MI5xpmaDxqasCUhpRSlGgVS65oFkdAkYz04BFNL3V9lChoBmgJaA9DCIhGdxD7QHDAlIaUUpRoFUukaBZHQJGM/y9VWCF1fZQoaAZoCWgPQwj4xhAAHLBhwJSGlFKUaBVLfGgWR0CRjQOB19v1dX2UKGgGaAloD0MI5sx2hb4+aMCUhpRSlGgVS4RoFkdAkY0XR5TqB3V9lChoBmgJaA9DCP2DSIYcvVPAlIaUUpRoFUtQaBZHQJGNLfZVXFN1fZQoaAZoCWgPQwiEEmba/r1uwJSGlFKUaBVLdmgWR0CRjXwudwvQdX2UKGgGaAloD0MIjPLMy+F6dsCUhpRSlGgVS2poFkdAkY25QUHpr3V9lChoBmgJaA9DCAnh0cYRzUbAlIaUUpRoFUtTaBZHQJGNt5/smfJ1fZQoaAZoCWgPQwgUW0HTEqFhwJSGlFKUaBVLc2gWR0CRjbvRJEpidX2UKGgGaAloD0MIniPyXUpXccCUhpRSlGgVS2ZoFkdAkY3Efs/puHV9lChoBmgJaA9DCKt14nI8/23AlIaUUpRoFUt7aBZHQJGN2s8xKxt1fZQoaAZoCWgPQwhEa0Wb49JcwJSGlFKUaBVLaGgWR0CRjfGdZq20dX2UKGgGaAloD0MIuf3yyYpuUcCUhpRSlGgVS0toFkdAkY36qCHymXV9lChoBmgJaA9DCKa4quy7DljAlIaUUpRoFUtIaBZHQJGOFpDeCTV1fZQoaAZoCWgPQwhvERjrmyRkwJSGlFKUaBVLWmgWR0CRjhsEq2BrdX2UKGgGaAloD0MIVyHlJ1V3asCUhpRSlGgVS4doFkdAkY4qTwDvE3V9lChoBmgJaA9DCK6gaYmVjVzAlIaUUpRoFUtTaBZHQJGOPaBZpzt1fZQoaAZoCWgPQwhORL+2/upqwJSGlFKUaBVLjGgWR0CRjlEAo5PudX2UKGgGaAloD0MIl8RZEbWEc8CUhpRSlGgVS29oFkdAkY6aXjU/fXV9lChoBmgJaA9DCDeKrDUUHGHAlIaUUpRoFUt2aBZHQJGO1i7TUiJ1fZQoaAZoCWgPQwg9mBQfn/5bwJSGlFKUaBVLS2gWR0CRjtKw6hg3dX2UKGgGaAloD0MIj8L1KFxnUsCUhpRSlGgVS19oFkdAkY7mcz67/XV9lChoBmgJaA9DCCB7vfvj/VDAlIaUUpRoFUtSaBZHQJGO8Iv8IiV1fZQoaAZoCWgPQwjKGB9mL11MwJSGlFKUaBVLVmgWR0CRjwGpMpPRdX2UKGgGaAloD0MIAg6hSs1VUMCUhpRSlGgVS05oFkdAkY8lY6nzhHV9lChoBmgJaA9DCIfguIwbqmDAlIaUUpRoFUtWaBZHQJGPJQwblzV1fZQoaAZoCWgPQwiTVnxD4cMSQJSGlFKUaBVLhmgWR0CRjzC2tuDSdX2UKGgGaAloD0MIZMvydRm2WMCUhpRSlGgVS1NoFkdAkY9X6/IsAnV9lChoBmgJaA9DCG+6ZYf4N0nAlIaUUpRoFUtgaBZHQJGPYL4N7Sl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLanderv2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af3a22a9a5f567a66b3d32cab0720170faa73b69816099681877b15150c1a046
|
3 |
+
size 143911
|
ppo-LunarLanderv2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLanderv2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e1097e320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e1097e3b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e1097e440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e1097e4d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0e1097e560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0e1097e5f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e1097e680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0e1097e710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e1097e7a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e1097e830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e1097e8c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0e109c6900>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 65536,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651923339.9526188,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCAgL19h8Y/5F8ivnGdfb3+veK9WOedvQAAAAAAAAAAZi90Pnq+xD8qlSI/uf4hvqhvhjwCoUs8AAAAAAAAAABNBWS9w260PxR8Nr+tWpW8d4EHPUYsWT0AAAAAAAAAAA3nj71mg60/h9Cavh/dXb4a1Qm91NcbvgAAAAAAAAAAwPywPRQnoT8GKwk9G63dvsxkAD5mPK49AAAAAAAAAAB0PBO/bxMYP5BQRb/ismO/Y5pePuLH9roAAAAAAAAAADPNEL2MO6g/tayivfXrgL7ZhZa9erwjPAAAAAAAAAAA7fvmPntKRz+9XGY/AiZyvwIA7r40sZs8AAAAAAAAAADmnDA9V0agPxXxMT604ui+6+ZaPdbmhz0AAAAAAAAAAEC53b7RryA+0ptKvqG+jr/akuC+K+qLvgAAAAAAAAAA2gmrvTAhlD/W1929EHPNvp1bZr6KXga+AAAAAAAAAABm0ei9/3CQP0u28b6/yTK/F3TCO90Ndr0AAAAAAAAAAK0oVj4wAbY/inQoP1c8ib4aVGa+o8ryvAAAAAAAAAAAAKq9PBSwpj3M3cA+H1Gtv+9DMr+jx9m9AAAAAAAAAACz62i9kVqvP56vJr9GtYW+Nm2XPYCLSj4AAAAAAAAAACr+Jj8/zfI+ZQYRPyaKgr8Ho4M+7gBzPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ/c7FAUiaMCUhpRSlIwBbJRLXIwBdJRHQJGF2ZlWfbt1fZQoaAZoCWgPQwjwiArVTbhwwJSGlFKUaBVLbmgWR0CRhefsu3+ddX2UKGgGaAloD0MI8Q2Fz9ZVbcCUhpRSlGgVS1RoFkdAkYX/J7sv7HV9lChoBmgJaA9DCOGyCpsBclrAlIaUUpRoFUtsaBZHQJGGF3dKujh1fZQoaAZoCWgPQwijBWhbzbNtwJSGlFKUaBVLb2gWR0CRhibwSamXdX2UKGgGaAloD0MIQpWaPVCDZMCUhpRSlGgVS3hoFkdAkYZIfW+XaHV9lChoBmgJaA9DCM7+QLltI2bAlIaUUpRoFUtlaBZHQJGGTWSU1Q91fZQoaAZoCWgPQwgtBg/Tvl9RwJSGlFKUaBVLQWgWR0CRhmSjxkNGdX2UKGgGaAloD0MIJ/VlaacyXcCUhpRSlGgVS1NoFkdAkYaSJ0nw5XV9lChoBmgJaA9DCJnxttLrfWTAlIaUUpRoFUuGaBZHQJGGqRV6u4h1fZQoaAZoCWgPQwg7qpog6ghZwJSGlFKUaBVLTWgWR0CRhrt5UtI1dX2UKGgGaAloD0MIAHDs2XNZFECUhpRSlGgVS2poFkdAkYbWNBF/hHV9lChoBmgJaA9DCO4E+6+z9XDAlIaUUpRoFUtwaBZHQJGG8gEEC/51fZQoaAZoCWgPQwjkSj0LQhU4wJSGlFKUaBVLRGgWR0CRhvfYzzmPdX2UKGgGaAloD0MI+S06WWopXMCUhpRSlGgVS1BoFkdAkYcVrl/6PHV9lChoBmgJaA9DCGtgqwSLm1nAlIaUUpRoFUtsaBZHQJGHLAsTWXl1fZQoaAZoCWgPQwiO6J51jQVTwJSGlFKUaBVLhWgWR0CRh1nTy8SPdX2UKGgGaAloD0MIXfxtT5DlXsCUhpRSlGgVS3poFkdAkYdh4Uvf0nV9lChoBmgJaA9DCIDSUKOQqFnAlIaUUpRoFUtsaBZHQJGHoI9kjHJ1fZQoaAZoCWgPQwh551CGagd0wJSGlFKUaBVLZ2gWR0CRh6dEsrd4dX2UKGgGaAloD0MIB9Dv+zehWMCUhpRSlGgVS1FoFkdAkYfmldkauXV9lChoBmgJaA9DCCBe1y/YylHAlIaUUpRoFUtWaBZHQJGH8AT7EYR1fZQoaAZoCWgPQwixGeCCbAtXwJSGlFKUaBVLb2gWR0CRh/osZpBYdX2UKGgGaAloD0MIz72HS47zSMCUhpRSlGgVS25oFkdAkYgOGfwqiHV9lChoBmgJaA9DCM+/XfbrhWrAlIaUUpRoFUt6aBZHQJGIIAAAAAB1fZQoaAZoCWgPQwiIghlTsK1hwJSGlFKUaBVLTWgWR0CRiDTXrdFfdX2UKGgGaAloD0MIe/SG+8idU8CUhpRSlGgVS5JoFkdAkYhYfKZDzHV9lChoBmgJaA9DCIbKv5bX0GvAlIaUUpRoFUtxaBZHQJGIoVxjriV1fZQoaAZoCWgPQwifWKfK9y9YwJSGlFKUaBVLQ2gWR0CRiKdGAkLQdX2UKGgGaAloD0MIya1Jt+WYcMCUhpRSlGgVS3ZoFkdAkYi6IFeOXHV9lChoBmgJaA9DCNEeL6RDXm3AlIaUUpRoFUuOaBZHQJGIvdRBNVR1fZQoaAZoCWgPQwgyjpHsEchnwJSGlFKUaBVLhGgWR0CRiM7bcoH+dX2UKGgGaAloD0MIGoaPiCn4ccCUhpRSlGgVS3doFkdAkYj1b7j1f3V9lChoBmgJaA9DCFNeK6G7h1jAlIaUUpRoFUtCaBZHQJGI/4tYjjd1fZQoaAZoCWgPQwgDd6BOeS5pwJSGlFKUaBVLbmgWR0CRiQtSQ5mzdX2UKGgGaAloD0MIlIRE2sYWeMCUhpRSlGgVS3loFkdAkYksXaakRHV9lChoBmgJaA9DCG1YU1kUylLAlIaUUpRoFUtWaBZHQJGJWvQnhKl1fZQoaAZoCWgPQwh720yFeMBXwJSGlFKUaBVLVWgWR0CRiWjqv/zbdX2UKGgGaAloD0MI/WfNj7+SUMCUhpRSlGgVS1loFkdAkYmMfNiYs3V9lChoBmgJaA9DCNY3MLlRpkrAlIaUUpRoFUuCaBZHQJGJmvkili11fZQoaAZoCWgPQwjnAMEcPR5IwJSGlFKUaBVLdmgWR0CRia0HQhOhdX2UKGgGaAloD0MIgLVq1wS+Z8CUhpRSlGgVS0loFkdAkYm6AavRq3V9lChoBmgJaA9DCOPdkbHaJFbAlIaUUpRoFUt7aBZHQJGJyDpTuOV1fZQoaAZoCWgPQwgdWfllsFlgwJSGlFKUaBVLPmgWR0CRie704BFNdX2UKGgGaAloD0MINLqD2JkkWsCUhpRSlGgVS1NoFkdAkYnzHn2ZiXV9lChoBmgJaA9DCNB8zt2u+FHAlIaUUpRoFUtRaBZHQJGJ+79Q40d1fZQoaAZoCWgPQwizeRwG80lYwJSGlFKUaBVLYGgWR0CRigmMwUQDdX2UKGgGaAloD0MIrye6LnxEdcCUhpRSlGgVS3VoFkdAkYoYOc2BKHV9lChoBmgJaA9DCOoJSzwgDnDAlIaUUpRoFUtcaBZHQJGKSRvFWGR1fZQoaAZoCWgPQwhcjexKy1QywJSGlFKUaBVLZmgWR0CRinYHPeHjdX2UKGgGaAloD0MIEsDN4sUOXMCUhpRSlGgVS1xoFkdAkYquN5t3wHV9lChoBmgJaA9DCJ9VZkrriFnAlIaUUpRoFUtuaBZHQJGKwjxCpm51fZQoaAZoCWgPQwhyiLg5lbpNwJSGlFKUaBVLWGgWR0CRitMl1KXfdX2UKGgGaAloD0MIc3/1uG8NQ8CUhpRSlGgVS2VoFkdAkYrgdGRV63V9lChoBmgJaA9DCH3NctnoMnfAlIaUUpRoFUuVaBZHQJGK5syi22J1fZQoaAZoCWgPQwhzuiwmNt1WwJSGlFKUaBVLYWgWR0CRiwMsH0K7dX2UKGgGaAloD0MI3rBtUWYlSMCUhpRSlGgVS1poFkdAkYsI150KZ3V9lChoBmgJaA9DCOJyvALRc1PAlIaUUpRoFUtgaBZHQJGLEXbdrO91fZQoaAZoCWgPQwgAqrhxC6RgwJSGlFKUaBVLbWgWR0CRi40QbuMNdX2UKGgGaAloD0MI/3ivWpkQUcCUhpRSlGgVS39oFkdAkYulj7Q9inV9lChoBmgJaA9DCL72zJIAjWLAlIaUUpRoFUtMaBZHQJGL6CiAUcp1fZQoaAZoCWgPQwg+eO3SRiB1wJSGlFKUaBVLh2gWR0CRi/FHrhR7dX2UKGgGaAloD0MIRzgteFFPb8CUhpRSlGgVS3xoFkdAkYvxxDLKWHV9lChoBmgJaA9DCAaFQZlGd1vAlIaUUpRoFUuJaBZHQJGME/IKc/d1fZQoaAZoCWgPQwhBfcucLk5iwJSGlFKUaBVLT2gWR0CRjBQ0XP7fdX2UKGgGaAloD0MI9fOmIhXdVsCUhpRSlGgVS0toFkdAkYwn9Nvfj3V9lChoBmgJaA9DCJnyIagarGHAlIaUUpRoFUtUaBZHQJGMLWK/Efl1fZQoaAZoCWgPQwgbDksDP+pCwJSGlFKUaBVLnWgWR0CRjFJ0GNaRdX2UKGgGaAloD0MI8NqlDYdPccCUhpRSlGgVS3JoFkdAkYxtELH+63V9lChoBmgJaA9DCPQau0T1fFPAlIaUUpRoFUtLaBZHQJGMvQWvbGp1fZQoaAZoCWgPQwhFoWXdP0lqwJSGlFKUaBVLgmgWR0CRjNdGy5ZsdX2UKGgGaAloD0MI5xpmaDxqasCUhpRSlGgVS65oFkdAkYz04BFNL3V9lChoBmgJaA9DCIhGdxD7QHDAlIaUUpRoFUukaBZHQJGM/y9VWCF1fZQoaAZoCWgPQwj4xhAAHLBhwJSGlFKUaBVLfGgWR0CRjQOB19v1dX2UKGgGaAloD0MI5sx2hb4+aMCUhpRSlGgVS4RoFkdAkY0XR5TqB3V9lChoBmgJaA9DCP2DSIYcvVPAlIaUUpRoFUtQaBZHQJGNLfZVXFN1fZQoaAZoCWgPQwiEEmba/r1uwJSGlFKUaBVLdmgWR0CRjXwudwvQdX2UKGgGaAloD0MIjPLMy+F6dsCUhpRSlGgVS2poFkdAkY25QUHpr3V9lChoBmgJaA9DCAnh0cYRzUbAlIaUUpRoFUtTaBZHQJGNt5/smfJ1fZQoaAZoCWgPQwgUW0HTEqFhwJSGlFKUaBVLc2gWR0CRjbvRJEpidX2UKGgGaAloD0MIniPyXUpXccCUhpRSlGgVS2ZoFkdAkY3Efs/puHV9lChoBmgJaA9DCKt14nI8/23AlIaUUpRoFUt7aBZHQJGN2s8xKxt1fZQoaAZoCWgPQwhEa0Wb49JcwJSGlFKUaBVLaGgWR0CRjfGdZq20dX2UKGgGaAloD0MIuf3yyYpuUcCUhpRSlGgVS0toFkdAkY36qCHymXV9lChoBmgJaA9DCKa4quy7DljAlIaUUpRoFUtIaBZHQJGOFpDeCTV1fZQoaAZoCWgPQwhvERjrmyRkwJSGlFKUaBVLWmgWR0CRjhsEq2BrdX2UKGgGaAloD0MIVyHlJ1V3asCUhpRSlGgVS4doFkdAkY4qTwDvE3V9lChoBmgJaA9DCK6gaYmVjVzAlIaUUpRoFUtTaBZHQJGOPaBZpzt1fZQoaAZoCWgPQwhORL+2/upqwJSGlFKUaBVLjGgWR0CRjlEAo5PudX2UKGgGaAloD0MIl8RZEbWEc8CUhpRSlGgVS29oFkdAkY6aXjU/fXV9lChoBmgJaA9DCDeKrDUUHGHAlIaUUpRoFUt2aBZHQJGO1i7TUiJ1fZQoaAZoCWgPQwg9mBQfn/5bwJSGlFKUaBVLS2gWR0CRjtKw6hg3dX2UKGgGaAloD0MIj8L1KFxnUsCUhpRSlGgVS19oFkdAkY7mcz67/XV9lChoBmgJaA9DCCB7vfvj/VDAlIaUUpRoFUtSaBZHQJGO8Iv8IiV1fZQoaAZoCWgPQwjKGB9mL11MwJSGlFKUaBVLVmgWR0CRjwGpMpPRdX2UKGgGaAloD0MIAg6hSs1VUMCUhpRSlGgVS05oFkdAkY8lY6nzhHV9lChoBmgJaA9DCIfguIwbqmDAlIaUUpRoFUtWaBZHQJGPJQwblzV1fZQoaAZoCWgPQwiTVnxD4cMSQJSGlFKUaBVLhmgWR0CRjzC2tuDSdX2UKGgGaAloD0MIZMvydRm2WMCUhpRSlGgVS1NoFkdAkY9X6/IsAnV9lChoBmgJaA9DCG+6ZYf4N0nAlIaUUpRoFUtgaBZHQJGPYL4N7Sl1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 16,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLanderv2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a46e4992340cdf5563c13661adbc206efcae595adb1b23fc6ec552f19113a3f
|
3 |
+
size 84829
|
ppo-LunarLanderv2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:165bb7e549a95dc7145194f3485bb9db357153029804795f3109a186e62525c2
|
3 |
+
size 43201
|
ppo-LunarLanderv2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLanderv2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cec0e50aa50abb03c5cab6f312caec46189724520bb29269bc334ed900012481
|
3 |
+
size 97714
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -673.7385801882483, "std_reward": 170.1709289844151, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T11:46:45.129387"}
|