hindi-embedding-foundational-model / hindi-rag-system.py
DeepMostInnovations's picture
Upload Hindi embeddings model and all associated files
cd44c92 verified
import os
import torch
import json
import argparse
import numpy as np
import re
from torch import nn
from torch.nn import functional as F
import sentencepiece as spm
import math
from safetensors.torch import save_file, load_file
from tqdm import tqdm
import faiss
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS as LangchainFAISS
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from typing import List, Dict, Any, Optional, Callable
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import gc
import warnings
# Ignore specific HuggingFace warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*The model doesn't have tied token embeddings.*")
# Tokenizer wrapper class - same as in original code
class SentencePieceTokenizerWrapper:
def __init__(self, sp_model_path):
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(sp_model_path)
self.vocab_size = self.sp_model.GetPieceSize()
# Special token IDs from tokenizer training
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.unk_token_id = 3
# Set special tokens
self.pad_token = "<pad>"
self.bos_token = "<s>"
self.eos_token = "</s>"
self.unk_token = "<unk>"
self.mask_token = "<mask>"
def __call__(self, text, padding=False, truncation=False, max_length=None, return_tensors=None):
# Handle both string and list inputs
if isinstance(text, str):
# Encode a single string
ids = self.sp_model.EncodeAsIds(text)
# Handle truncation
if truncation and max_length and len(ids) > max_length:
ids = ids[:max_length]
attention_mask = [1] * len(ids)
# Handle padding
if padding and max_length:
padding_length = max(0, max_length - len(ids))
ids = ids + [self.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
result = {
'input_ids': ids,
'attention_mask': attention_mask
}
# Convert to tensors if requested
if return_tensors == 'pt':
import torch
result = {k: torch.tensor([v]) for k, v in result.items()}
return result
# Process a batch of texts
batch_encoded = [self.sp_model.EncodeAsIds(t) for t in text]
# Apply truncation if needed
if truncation and max_length:
batch_encoded = [ids[:max_length] for ids in batch_encoded]
# Create attention masks
batch_attention_mask = [[1] * len(ids) for ids in batch_encoded]
# Apply padding if needed
if padding:
if max_length:
max_len = max_length
else:
max_len = max(len(ids) for ids in batch_encoded)
# Pad sequences to max_len
batch_encoded = [ids + [self.pad_token_id] * (max_len - len(ids)) for ids in batch_encoded]
batch_attention_mask = [mask + [0] * (max_len - len(mask)) for mask in batch_attention_mask]
result = {
'input_ids': batch_encoded,
'attention_mask': batch_attention_mask
}
# Convert to tensors if requested
if return_tensors == 'pt':
import torch
result = {k: torch.tensor(v) for k, v in result.items()}
return result
# Model architecture definitions for inference
class MultiHeadAttention(nn.Module):
"""Advanced multi-headed attention with relative positional encoding"""
def __init__(self, config):
super().__init__()
self.num_attention_heads = config["num_attention_heads"]
self.attention_head_size = config["hidden_size"] // config["num_attention_heads"]
self.all_head_size = self.num_attention_heads * self.attention_head_size
# Query, Key, Value projections
self.query = nn.Linear(config["hidden_size"], self.all_head_size)
self.key = nn.Linear(config["hidden_size"], self.all_head_size)
self.value = nn.Linear(config["hidden_size"], self.all_head_size)
# Output projection
self.output = nn.Sequential(
nn.Linear(self.all_head_size, config["hidden_size"]),
nn.Dropout(config["attention_probs_dropout_prob"])
)
# Simplified relative position bias approach
self.max_position_embeddings = config["max_position_embeddings"]
self.relative_attention_bias = nn.Embedding(
2 * config["max_position_embeddings"] - 1,
config["num_attention_heads"]
)
def transpose_for_scores(self, x):
new_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None):
batch_size, seq_length = hidden_states.size()[:2]
# Project inputs to queries, keys, and values
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between query and key to get the raw attention scores
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# Generate relative position matrix
position_ids = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device)
relative_position = position_ids.unsqueeze(1) - position_ids.unsqueeze(0) # [seq_len, seq_len]
# Shift values to be >= 0
relative_position = relative_position + self.max_position_embeddings - 1
# Ensure indices are within bounds
relative_position = torch.clamp(relative_position, 0, 2 * self.max_position_embeddings - 2)
# Get relative position embeddings [seq_len, seq_len, num_heads]
rel_attn_bias = self.relative_attention_bias(relative_position) # [seq_len, seq_len, num_heads]
# Reshape to add to attention heads [1, num_heads, seq_len, seq_len]
rel_attn_bias = rel_attn_bias.permute(2, 0, 1).unsqueeze(0)
# Add to attention scores - now dimensions will match
attention_scores = attention_scores + rel_attn_bias
# Scale attention scores
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply attention mask
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities
attention_probs = F.softmax(attention_scores, dim=-1)
# Apply dropout
attention_probs = F.dropout(attention_probs, p=0.1, training=self.training)
# Apply attention to values
context_layer = torch.matmul(attention_probs, value_layer)
# Reshape back to [batch_size, seq_length, hidden_size]
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_shape)
# Final output projection
output = self.output(context_layer)
return output
class EnhancedTransformerLayer(nn.Module):
"""Advanced transformer layer with pre-layer norm and enhanced attention"""
def __init__(self, config):
super().__init__()
self.attention_pre_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
self.attention = MultiHeadAttention(config)
self.ffn_pre_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
# Feed-forward network
self.ffn = nn.Sequential(
nn.Linear(config["hidden_size"], config["intermediate_size"]),
nn.GELU(),
nn.Dropout(config["hidden_dropout_prob"]),
nn.Linear(config["intermediate_size"], config["hidden_size"]),
nn.Dropout(config["hidden_dropout_prob"])
)
def forward(self, hidden_states, attention_mask=None):
# Pre-layer norm for attention
attn_norm_hidden = self.attention_pre_norm(hidden_states)
# Self-attention
attention_output = self.attention(attn_norm_hidden, attention_mask)
# Residual connection
hidden_states = hidden_states + attention_output
# Pre-layer norm for feed-forward
ffn_norm_hidden = self.ffn_pre_norm(hidden_states)
# Feed-forward
ffn_output = self.ffn(ffn_norm_hidden)
# Residual connection
hidden_states = hidden_states + ffn_output
return hidden_states
class AdvancedTransformerModel(nn.Module):
"""Advanced Transformer model for inference"""
def __init__(self, config):
super().__init__()
self.config = config
# Embeddings
self.word_embeddings = nn.Embedding(
config["vocab_size"],
config["hidden_size"],
padding_idx=config["pad_token_id"]
)
# Position embeddings
self.position_embeddings = nn.Embedding(config["max_position_embeddings"], config["hidden_size"])
# Embedding dropout
self.embedding_dropout = nn.Dropout(config["hidden_dropout_prob"])
# Transformer layers
self.layers = nn.ModuleList([
EnhancedTransformerLayer(config) for _ in range(config["num_hidden_layers"])
])
# Final layer norm
self.final_layer_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
def forward(self, input_ids, attention_mask=None):
input_shape = input_ids.size()
batch_size, seq_length = input_shape
# Get position ids
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
# Get embeddings
word_embeds = self.word_embeddings(input_ids)
position_embeds = self.position_embeddings(position_ids)
# Sum embeddings
embeddings = word_embeds + position_embeds
# Apply dropout
embeddings = self.embedding_dropout(embeddings)
# Default attention mask
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=input_ids.device)
# Extended attention mask for transformer layers (1 for tokens to attend to, 0 for masked tokens)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# Apply transformer layers
hidden_states = embeddings
for layer in self.layers:
hidden_states = layer(hidden_states, extended_attention_mask)
# Final layer norm
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class AdvancedPooling(nn.Module):
"""Advanced pooling module supporting multiple pooling strategies"""
def __init__(self, config):
super().__init__()
self.pooling_mode = config["pooling_mode"] # 'mean', 'max', 'cls', 'attention'
self.hidden_size = config["hidden_size"]
# For attention pooling
if self.pooling_mode == 'attention':
self.attention_weights = nn.Linear(config["hidden_size"], 1)
# For weighted pooling
elif self.pooling_mode == 'weighted':
self.weight_layer = nn.Linear(config["hidden_size"], 1)
def forward(self, token_embeddings, attention_mask=None):
if attention_mask is None:
attention_mask = torch.ones_like(token_embeddings[:, :, 0])
mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
if self.pooling_mode == 'cls':
# Use [CLS] token (first token)
pooled = token_embeddings[:, 0]
elif self.pooling_mode == 'max':
# Max pooling
token_embeddings = token_embeddings.clone()
# Set padding tokens to large negative value to exclude them from max
token_embeddings[mask_expanded == 0] = -1e9
pooled = torch.max(token_embeddings, dim=1)[0]
elif self.pooling_mode == 'attention':
# Attention pooling
weights = self.attention_weights(token_embeddings).squeeze(-1)
# Mask out padding tokens
weights = weights.masked_fill(attention_mask == 0, -1e9)
weights = F.softmax(weights, dim=1).unsqueeze(-1)
pooled = torch.sum(token_embeddings * weights, dim=1)
elif self.pooling_mode == 'weighted':
# Weighted average pooling
weights = torch.sigmoid(self.weight_layer(token_embeddings)).squeeze(-1)
# Apply mask
weights = weights * attention_mask
# Normalize weights
sum_weights = torch.sum(weights, dim=1, keepdim=True)
sum_weights = torch.clamp(sum_weights, min=1e-9)
weights = weights / sum_weights
# Apply weights
pooled = torch.sum(token_embeddings * weights.unsqueeze(-1), dim=1)
else: # Default to mean pooling
# Mean pooling
sum_embeddings = torch.sum(token_embeddings * mask_expanded, dim=1)
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
pooled = sum_embeddings / sum_mask
# L2 normalize
pooled = F.normalize(pooled, p=2, dim=1)
return pooled
class SentenceEmbeddingModel(nn.Module):
"""Complete sentence embedding model for inference"""
def __init__(self, config):
super(SentenceEmbeddingModel, self).__init__()
self.config = config
# Create transformer model
self.transformer = AdvancedTransformerModel(config)
# Create pooling module
self.pooling = AdvancedPooling(config)
# Build projection module if needed
if "projection_dim" in config and config["projection_dim"] > 0:
self.use_projection = True
self.projection = nn.Sequential(
nn.Linear(config["hidden_size"], config["hidden_size"]),
nn.GELU(),
nn.Linear(config["hidden_size"], config["projection_dim"]),
nn.LayerNorm(config["projection_dim"], eps=config["layer_norm_eps"])
)
else:
self.use_projection = False
def forward(self, input_ids, attention_mask=None):
# Get token embeddings from transformer
token_embeddings = self.transformer(input_ids, attention_mask)
# Pool token embeddings
pooled_output = self.pooling(token_embeddings, attention_mask)
# Apply projection if enabled
if self.use_projection:
pooled_output = self.projection(pooled_output)
pooled_output = F.normalize(pooled_output, p=2, dim=1)
return pooled_output
def convert_to_safetensors(model_path, output_path):
"""Convert PyTorch model to safetensors format"""
print(f"Converting model from {model_path} to safetensors format...")
try:
# First try with weights_only=False to handle PyTorch 2.6+ checkpoints
checkpoint = torch.load(model_path, map_location="cpu", weights_only=False)
print("Successfully loaded checkpoint with weights_only=False")
except TypeError:
# For older PyTorch versions that don't have weights_only parameter
print("Falling back to default torch.load behavior for older PyTorch versions")
checkpoint = torch.load(model_path, map_location="cpu")
# Get model state dict
if "model_state_dict" in checkpoint:
state_dict = checkpoint["model_state_dict"]
print("Extracted model_state_dict from checkpoint")
else:
state_dict = checkpoint
print("Using entire checkpoint as state_dict")
# Save as safetensors
save_file(state_dict, output_path)
print(f"Model converted and saved to {output_path}")
def load_model_and_tokenizer(model_dir, tokenizer_dir="/home/ubuntu/hindi_tokenizer"):
"""Load the model and tokenizer for inference"""
# Load the config
config_path = os.path.join(model_dir, "config.json")
with open(config_path, "r") as f:
config = json.load(f)
# Load the tokenizer - use specified tokenizer directory
tokenizer_path = os.path.join(tokenizer_dir, "tokenizer.model")
if not os.path.exists(tokenizer_path):
# Try other locations
tokenizer_path = os.path.join(model_dir, "tokenizer.model")
if not os.path.exists(tokenizer_path):
raise FileNotFoundError(f"Could not find tokenizer model at {tokenizer_path}")
tokenizer = SentencePieceTokenizerWrapper(tokenizer_path)
print(f"Loaded tokenizer from {tokenizer_path} with vocabulary size: {tokenizer.vocab_size}")
# Load the model
safetensors_path = os.path.join(model_dir, "embedding_model.safetensors")
if not os.path.exists(safetensors_path):
print(f"Safetensors model not found at {safetensors_path}, converting from PyTorch checkpoint...")
# Convert from PyTorch checkpoint
pytorch_path = os.path.join(model_dir, "embedding_model.pt")
if not os.path.exists(pytorch_path):
raise FileNotFoundError(f"Could not find PyTorch model at {pytorch_path}")
convert_to_safetensors(pytorch_path, safetensors_path)
# Load state dict from safetensors
state_dict = load_file(safetensors_path)
# Create model
model = SentenceEmbeddingModel(config)
# Load state dict
try:
# Try direct loading
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print(f"Loaded model with missing keys: {missing_keys[:10]}{'...' if len(missing_keys) > 10 else ''}")
print(f"Unexpected keys: {unexpected_keys[:10]}{'...' if len(unexpected_keys) > 10 else ''}")
except Exception as e:
print(f"Error loading state dict: {e}")
print("Model will be initialized with random weights")
model.eval()
return model, tokenizer, config
# LangChain Custom Embeddings Class
class HindiSentenceEmbeddings(Embeddings):
"""
Custom Langchain Embeddings class for Hindi sentence embeddings model
"""
def __init__(self, model, tokenizer, device="cuda", batch_size=32, max_length=128):
"""Initialize with model, tokenizer, and inference parameters"""
self.model = model
self.tokenizer = tokenizer
self.device = device
self.batch_size = batch_size
self.max_length = max_length
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents/texts"""
embeddings = []
with torch.no_grad():
for i in range(0, len(texts), self.batch_size):
batch = texts[i:i+self.batch_size]
# Tokenize
inputs = self.tokenizer(
batch,
padding="max_length",
truncation=True,
max_length=self.max_length,
return_tensors="pt"
)
# Move to device
input_ids = inputs["input_ids"].to(self.device)
attention_mask = inputs["attention_mask"].to(self.device)
# Get embeddings
batch_embeddings = self.model(input_ids, attention_mask)
# Move to CPU and convert to numpy
batch_embeddings = batch_embeddings.cpu().numpy()
embeddings.append(batch_embeddings)
return np.vstack(embeddings).tolist()
def embed_query(self, text: str) -> List[float]:
"""Embed a single query/text"""
return self.embed_documents([text])[0]
def extract_relevant_sentences(text, query, window_size=2):
"""
Extract the most relevant sentences from text based on query keywords
Args:
text: The full text content
query: The user's query
window_size: Number of sentences to include before and after matched sentence
Returns:
String containing the most relevant portion of the text
"""
# Clean and normalize query and text for matching
query = query.strip().lower()
# Remove question marks and other punctuation from query for matching
query = re.sub(r'[?।॥!,.:]', '', query)
# Extract keywords from the query (remove common Hindi stop words)
stop_words = ['और', 'का', 'के', 'को', 'में', 'से', 'है', 'हैं', 'था', 'थे', 'की', 'कि', 'पर', 'एक', 'यह', 'वह', 'जो', 'ने', 'हो', 'कर']
query_terms = [word for word in query.split() if word not in stop_words]
if not query_terms:
return text # If no meaningful terms left, return the full text
# Split text into sentences (using Hindi sentence terminators)
sentences = re.split(r'([।॥!?.])', text)
# Rejoin sentences with their terminators
complete_sentences = []
for i in range(0, len(sentences)-1, 2):
if i+1 < len(sentences):
complete_sentences.append(sentences[i] + sentences[i+1])
else:
complete_sentences.append(sentences[i])
# If the above didn't work properly, try simpler approach
if len(complete_sentences) <= 1:
complete_sentences = re.split(r'[।॥!?.]', text)
complete_sentences = [s.strip() for s in complete_sentences if s.strip()]
# Score each sentence based on how many query terms it contains
sentence_scores = []
for i, sentence in enumerate(complete_sentences):
sentence_lower = sentence.lower()
# Calculate score based on number of query terms found
score = sum(1 for term in query_terms if term in sentence_lower)
sentence_scores.append((i, score))
# Find the best matching sentence
if not sentence_scores:
return text[:500] + "..." # Fallback
# Get the index of sentence with highest score
best_match_idx, best_score = max(sentence_scores, key=lambda x: x[1])
# If no good match found, return the whole text (up to a limit)
if best_score == 0:
# Try partial word matching as a fallback
for i, sentence in enumerate(complete_sentences):
sentence_lower = sentence.lower()
partial_score = sum(1 for term in query_terms if any(term in word.lower() for word in sentence_lower.split()))
if partial_score > 0:
best_match_idx = i
break
else:
# If still no match, just return the first part of the text
if len(text) > 1000:
return text[:1000] + "..."
return text
# Get window of sentences around the best match
start_idx = max(0, best_match_idx - window_size)
end_idx = min(len(complete_sentences), best_match_idx + window_size + 1)
# Create excerpt
relevant_text = ' '.join(complete_sentences[start_idx:end_idx])
# If the excerpt is short, return more context
if len(relevant_text) < 100 and len(text) > len(relevant_text):
# Add more context
if end_idx < len(complete_sentences):
relevant_text += ' ' + ' '.join(complete_sentences[end_idx:end_idx+2])
if start_idx > 0:
relevant_text = ' '.join(complete_sentences[max(0, start_idx-2):start_idx]) + ' ' + relevant_text
# If the excerpt is too short or the whole text is small anyway, return whole text
if len(relevant_text) < 50 or len(text) < 1000:
return text
return relevant_text
# Text processing and indexing functions
def load_and_process_text_file(file_path, chunk_size=500, chunk_overlap=100):
"""
Load a text file and split it into semantically meaningful chunks
"""
print(f"Loading and processing text file: {file_path}")
# Read the file content
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# For small files, just keep the whole content as a single chunk
if len(content) <= chunk_size * 2:
print(f"File content is small, keeping as a single chunk")
return [Document(
page_content=content,
metadata={
"source": file_path,
"chunk_id": 0
}
)]
# Split by paragraphs first
paragraphs = re.split(r'\n\s*\n', content)
chunks = []
current_chunk = ""
current_size = 0
for para in paragraphs:
if not para.strip():
continue
# If adding this paragraph would exceed the chunk size, save current chunk and start new one
if current_size + len(para) > chunk_size and current_size > 0:
chunks.append(current_chunk)
current_chunk = para
current_size = len(para)
else:
# Add paragraph to current chunk with a newline if not empty
if current_size > 0:
current_chunk += "\n\n" + para
else:
current_chunk = para
current_size = len(current_chunk)
# Add the last chunk if not empty
if current_chunk:
chunks.append(current_chunk)
print(f"Split text into {len(chunks)} chunks")
# Convert to LangChain documents with metadata
documents = [
Document(
page_content=chunk,
metadata={
"source": file_path,
"chunk_id": i
}
) for i, chunk in enumerate(chunks)
]
return documents
def create_vector_store(documents, embeddings, store_path=None):
"""
Create a FAISS vector store from documents using the given embeddings
"""
print("Creating FAISS vector store...")
# Create vector store
vector_store = LangchainFAISS.from_documents(documents, embeddings)
# Save if path is provided
if store_path:
print(f"Saving vector store to {store_path}")
vector_store.save_local(store_path)
return vector_store
def load_vector_store(store_path, embeddings):
"""
Load a FAISS vector store from disk
"""
print(f"Loading vector store from {store_path}")
return LangchainFAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
def perform_similarity_search(vector_store, query, k=6):
"""
Perform basic similarity search on the vector store
"""
print(f"Searching for: {query}")
return vector_store.similarity_search_with_score(query, k=k)
# Llama model loading function
def load_llama_model(model_name="unsloth/Llama-3.2-1B-Instruct", device="cuda"):
"""
Load and prepare Llama model for text generation
"""
print(f"Loading LLM: {model_name}")
# Check if CUDA is available
if device == "cuda" and not torch.cuda.is_available():
print("CUDA not available, falling back to CPU")
device = "cpu"
# Quantization config for 4-bit precision to save memory
quantization = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
) if device == "cuda" else None
# Standard HuggingFace loading
tokenizer = AutoTokenizer.from_pretrained(model_name)
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
quantization_config=quantization
)
else:
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to(device)
print("Successfully loaded model")
return model, tokenizer
# NEW FUNCTIONS FOR COMBINED RESULTS APPROACH
def combine_top_results(results, query, max_results=4):
"""
Combine the top search results into a single coherent context
Args:
results: List of (Document, score) tuples from retrieval
query: Original user query
max_results: Maximum number of results to combine
Returns:
String containing combined context from top results
"""
# Sort results by score (highest first) and take top N
sorted_results = sorted(results, key=lambda x: x[1], reverse=True)[:max_results]
combined_texts = []
seen_content = set() # To avoid duplicates
for doc, score in sorted_results:
# Extract relevant sentences to keep context focused
relevant_text = extract_relevant_sentences(doc.page_content, query, window_size=3)
# Skip if this exact text has been seen before
if relevant_text in seen_content:
continue
# Add source information to the text
source_name = os.path.basename(doc.metadata["source"])
text_with_source = f"{relevant_text} [Source: {source_name}]"
combined_texts.append(text_with_source)
seen_content.add(relevant_text)
# Combine all texts with clear separation
combined_context = "\n\n".join(combined_texts)
return combined_context
def setup_enhanced_qa_system(model, tokenizer, vector_store):
"""
Set up an enhanced QA system using the model and retriever with result combination
"""
# Create retriever
retriever = vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 6} # Get more results than we'll use to filter better
)
# Create a function to generate answers with combined context
def generate_enhanced_answer(query):
# Get raw documents and scores
docs = vector_store.similarity_search_with_score(query, k=6)
# Combine the top results into a single context
combined_context = combine_top_results(docs, query, max_results=4)
# Create prompt with the combined context
prompt = f"""
आपको निम्नलिखित संदर्भ से जानकारी के आधार पर एक प्रश्न का उत्तर देना है।
यदि आप उत्तर नहीं जानते हैं, तो बस "मुझे नहीं पता" कहें। अपने उत्तर में सभी प्रासंगिक जानकारी का उपयोग करें।
संदर्भ:
{combined_context}
प्रश्न: {query}
उत्तर:
"""
# Generate text
inputs = tokenizer(prompt, return_tensors="pt")
# Move to the same device as the model
for k, v in inputs.items():
if hasattr(v, "to") and callable(v.to):
inputs[k] = v.to(model.device)
with torch.no_grad():
try:
outputs = model.generate(
inputs.input_ids,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
except Exception as e:
return f"Error generating response: {str(e)}", None
# Decode the generated text
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the prompt)
answer = full_response.split("उत्तर:")[-1].strip()
return answer, combined_context
return generate_enhanced_answer
# Main RAG functions
def index_text_files(model, tokenizer, data_dir, output_dir, device="cuda", chunk_size=500):
"""
Index text files from a directory and create a FAISS vector store
"""
print(f"Indexing text files from {data_dir} with chunk size ({chunk_size}) for fine-grained retrieval")
# Create embedding model
embeddings = HindiSentenceEmbeddings(model, tokenizer, device=device)
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Get all text files
text_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.txt')]
print(f"Found {len(text_files)} text files")
# Process all text files
all_documents = []
for file_path in text_files:
documents = load_and_process_text_file(file_path, chunk_size=chunk_size)
all_documents.extend(documents)
print(f"Total documents: {len(all_documents)}")
# If we don't have enough chunks, reduce chunk size and try again
if len(all_documents) < 10 and chunk_size > 50:
print(f"Not enough chunks created. Reducing chunk size and trying again...")
return index_text_files(model, tokenizer, data_dir, output_dir, device, chunk_size=chunk_size//2)
# Create and save vector store
vector_store_path = os.path.join(output_dir, "faiss_index")
vector_store = create_vector_store(all_documents, embeddings, vector_store_path)
return vector_store, embeddings
def query_text_corpus(model, tokenizer, vector_store_path, query, k=6, device="cuda"):
"""
Query the text corpus using the indexed vector store
"""
# Create embedding model
embeddings = HindiSentenceEmbeddings(model, tokenizer, device=device)
# Load vector store
vector_store = load_vector_store(vector_store_path, embeddings)
# Perform similarity search
results = perform_similarity_search(vector_store, query, k=k)
return results, vector_store
def main():
parser = argparse.ArgumentParser(description="Hindi RAG System with Combined Results")
parser.add_argument("--model_dir", type=str, default="/home/ubuntu/output/hindi-embeddings-custom-tokenizer/final",
help="Directory containing the model and tokenizer")
parser.add_argument("--tokenizer_dir", type=str, default="/home/ubuntu/hindi_tokenizer",
help="Directory containing the tokenizer")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device to run inference on ('cuda' or 'cpu')")
parser.add_argument("--index", action="store_true",
help="Index text files from data directory")
parser.add_argument("--query", type=str, default=None,
help="Query to search in the indexed corpus")
parser.add_argument("--data_dir", type=str, default="./data",
help="Directory containing text files for indexing")
parser.add_argument("--output_dir", type=str, default="./output",
help="Directory to save the indexed vector store")
parser.add_argument("--top_k", type=int, default=6,
help="Number of top results to return")
parser.add_argument("--chunk_size", type=int, default=500,
help="Size of text chunks for indexing")
parser.add_argument("--interactive", action="store_true",
help="Run in interactive mode for querying")
parser.add_argument("--reindex", action="store_true",
help="Force reindexing even if index exists")
parser.add_argument("--llm_name", type=str, default="unsloth/Llama-3.2-1B-Instruct",
help="HuggingFace model name for the LLM")
parser.add_argument("--show_context", action="store_true",
help="Show the combined context sent to the LLM")
parser.add_argument("--show_raw_results", action="store_true",
help="Show the raw search results before combination")
args = parser.parse_args()
# Load embedding model and tokenizer
embed_model, embed_tokenizer, config = load_model_and_tokenizer(args.model_dir, args.tokenizer_dir)
# Move embedding model to device
embed_model = embed_model.to(args.device)
# Create vector store path
vector_store_path = os.path.join(args.output_dir, "faiss_index")
# Load LLM
try:
# Load LLM
llm_model, llm_tokenizer = load_llama_model(args.llm_name, args.device)
print("LLM loaded successfully for QA")
except Exception as e:
print(f"Error loading LLM: {e}")
print("Cannot proceed without LLM for this combined results approach")
return
if args.index or args.reindex:
# Index text files
vector_store, _ = index_text_files(
embed_model, embed_tokenizer, args.data_dir, args.output_dir, args.device, args.chunk_size
)
print(f"Indexing complete. Vector store saved to {vector_store_path}")
# Load vector store for querying
embeddings = HindiSentenceEmbeddings(embed_model, embed_tokenizer, device=args.device)
vector_store = load_vector_store(vector_store_path, embeddings)
# Set up enhanced QA system
qa_generator = setup_enhanced_qa_system(llm_model, llm_tokenizer, vector_store)
if args.query:
# Process the query with the enhanced system
print(f"\nProcessing query: {args.query}")
# Show raw results if requested
if args.show_raw_results:
results, _ = query_text_corpus(
embed_model, embed_tokenizer, vector_store_path, args.query, args.top_k, args.device
)
print("\nRaw Search Results:")
for i, (doc, score) in enumerate(results):
print(f"\nResult {i+1} (Score: {score:.4f}):")
print(f"Source: {doc.metadata['source']}, Chunk: {doc.metadata['chunk_id']}")
print(f"Content: {doc.page_content[:200]}...")
# Generate enhanced answer
answer, context = qa_generator(args.query)
if args.show_context:
print("\nCombined Context:")
print(context)
print("\nEnhanced LLM Answer:")
print(answer)
if args.interactive:
print("\nInteractive mode. Enter queries (or type 'quit' to exit).")
while True:
print("\nEnter query:")
query = input()
if not query.strip():
continue
if query.lower() == 'quit':
break
# Show raw results if requested
if args.show_raw_results:
results, _ = query_text_corpus(
embed_model, embed_tokenizer, vector_store_path, query, args.top_k, args.device
)
print("\nRaw Search Results:")
for i, (doc, score) in enumerate(results):
print(f"\nResult {i+1} (Score: {score:.4f}):")
print(f"Source: {doc.metadata['source']}, Chunk: {doc.metadata['chunk_id']}")
print(f"Content: {doc.page_content[:200]}...")
# Process the query
print(f"\nProcessing query: {query}")
answer, context = qa_generator(query)
if args.show_context:
print("\nCombined Context:")
print(context)
print("\nEnhanced LLM Answer:")
print(answer)
# Clean up GPU memory
if args.device == "cuda":
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
main()