File size: 1,254 Bytes
cff20ff 3b14783 8ce195f 31f7954 cff20ff e34a405 6cc7084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
pipeline_tag: text-classification
language:
- it
library_name: gliner
---
Still needs some work to improve performance, but it's good—almost like [DeepMount00/universal_ner_ita](https://huggingface.co/DeepMount00/universal_ner_ita).
## Installation
To use this model, you must install the GLiNER Python library:
```
!pip install gliner
```
## Usage
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`.
```python
from gliner import GLiNER
model = GLiNER.from_pretrained("DeepMount00/GLiNER_ITA_SMALL")
text = """..."""
labels = ["label1", "label2"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
```
## Model Author
* [Michele Montebovi](https://huggingface.co/DeepMount00)
## Citation
```bibtex
@misc{zaratiana2023gliner,
title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer},
author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
year={2023},
eprint={2311.08526},
archivePrefix={arXiv},
primaryClass={cs.CL}
} |