Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- information-retrieval
|
6 |
+
- semantic-search
|
7 |
+
widget:
|
8 |
+
- source_sentence: "Descrivi dettagliatamente il processo chimico e fisico che avviene durante la preparazione di un impasto per crostata"
|
9 |
+
sentences:
|
10 |
+
- "## La Magia Chimica e Fisica nell'Impasto della Crostata: Un Viaggio Dagli Ingredienti Secchi al Trionfo del Forno\n\nLa preparazione di una crostata, apparentemente un gesto semplice e familiare, cela in realtà un affascinante balletto di reazioni chimiche e trasformazioni fisiche..."
|
11 |
+
- "## L'Arte Effimera: Creare un Dolce Paesaggio Invernale\n\nImmergiamoci nel cuore pulsante della pasticceria festiva, dove l'arte culinaria si fonde con la creatività artistica..."
|
12 |
+
- "Le piattaforme di comunicazione digitale, con la loro ubiquità crescente, si configurano come un'arma a doppio taglio nel panorama sociale contemporaneo..."
|
13 |
+
pipeline_tag: sentence-similarity
|
14 |
+
library_name: sentence-transformers
|
15 |
+
---
|
16 |
+
|
17 |
+
# Fine-tuned Qwen3-Embedding for Italian-English Cross-Lingual Semantic Retrieval
|
18 |
+
|
19 |
+
This model is a specialized fine-tuned version of [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) optimized for cross-lingual semantic retrieval tasks, with particular emphasis on Italian query understanding and multilingual document ranking.
|
20 |
+
|
21 |
+
## Model Description
|
22 |
+
|
23 |
+
- **Model Type**: Dense embedding model for semantic retrieval
|
24 |
+
- **Base Model**: [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B)
|
25 |
+
- **Output Dimensionality**: 1,024-dimensional dense vectors
|
26 |
+
- **Maximum Sequence Length**: 32,768 tokens
|
27 |
+
- **Primary Languages**: Italian, English
|
28 |
+
- **Similarity Function**: Cosine similarity
|
29 |
+
|
30 |
+
## Capabilities
|
31 |
+
|
32 |
+
### Cross-Lingual Retrieval
|
33 |
+
The model demonstrates strong performance in matching Italian queries to English documents and vice versa, particularly effective in technical and academic domains.
|
34 |
+
|
35 |
+
### Domain Coverage
|
36 |
+
Trained on diverse knowledge domains including:
|
37 |
+
- **Medical & Health Sciences**: Diagnostic imaging, clinical procedures, medical terminology
|
38 |
+
- **STEM Fields**: Physics, computer science, geology, engineering
|
39 |
+
- **Professional Domains**: Finance, law, agriculture, software development
|
40 |
+
- **Educational Content**: Historical studies, culinary arts, general knowledge
|
41 |
+
|
42 |
+
### Query Understanding
|
43 |
+
Enhanced comprehension of:
|
44 |
+
- Conversational and informal query patterns
|
45 |
+
- Technical terminology across domains
|
46 |
+
- Cross-lingual semantic concepts
|
47 |
+
- Complex multi-faceted questions
|
48 |
+
|
49 |
+
## Training Data
|
50 |
+
|
51 |
+
The model was fine-tuned on a curated corpus of Italian-English cross-lingual data, featuring high-quality triplets designed to capture semantic nuances across multiple domains. The dataset emphasizes:
|
52 |
+
|
53 |
+
- **Hard negative mining**: Strategic inclusion of semantically related but incorrect documents
|
54 |
+
- **Cross-lingual alignment**: Balanced representation of Italian-English language pairs
|
55 |
+
- **Domain diversity**: Comprehensive coverage of academic, professional, and conversational contexts
|
56 |
+
- **Quality curation**: Manual review and automated filtering for coherence and relevance
|
57 |
+
|
58 |
+
## Usage
|
59 |
+
|
60 |
+
### Basic Retrieval
|
61 |
+
```python
|
62 |
+
from sentence_transformers import SentenceTransformer
|
63 |
+
|
64 |
+
model = SentenceTransformer("your-model-name")
|
65 |
+
|
66 |
+
# Cross-lingual query-document matching
|
67 |
+
query = "Come si distingue una faglia trascorrente da una normale?"
|
68 |
+
documents = [
|
69 |
+
"Strike-slip faults are characterized by horizontal movement...",
|
70 |
+
"Normal faults occur due to extensional stress...",
|
71 |
+
"Investment portfolio management strategies..."
|
72 |
+
]
|
73 |
+
|
74 |
+
query_embedding = model.encode(query, prompt="Represent this search query for finding relevant passages: ")
|
75 |
+
doc_embeddings = model.encode(documents, prompt="Represent this passage for retrieval: ")
|
76 |
+
similarities = model.similarity(query_embedding, doc_embeddings)
|
77 |
+
```
|
78 |
+
|
79 |
+
### Prompt Templates
|
80 |
+
The model is optimized for specific prompt templates:
|
81 |
+
- **Queries**: `"Represent this search query for finding relevant passages: "`
|
82 |
+
- **Documents**: `"Represent this passage for retrieval: "`
|
83 |
+
|
84 |
+
## Applications
|
85 |
+
|
86 |
+
- **Cross-lingual information retrieval systems**
|
87 |
+
- **Academic and technical document search**
|
88 |
+
- **Multilingual question-answering platforms**
|
89 |
+
- **Educational content recommendation**
|
90 |
+
- **Professional knowledge base systems**
|
91 |
+
|
92 |
+
## Limitations
|
93 |
+
|
94 |
+
- **Language coverage**: Primarily optimized for Italian-English pairs
|
95 |
+
- **Domain specificity**: Performance may vary on highly specialized domains not represented in training
|
96 |
+
- **Cultural context**: Reflects primarily Western/European knowledge perspectives
|
97 |
+
- **Computational requirements**: Dense representations require significant storage for large-scale deployment
|
98 |
+
|
99 |
+
## Model Architecture
|
100 |
+
|
101 |
+
```
|
102 |
+
SentenceTransformer(
|
103 |
+
(0): Transformer({'max_seq_length': 32768, 'architecture': 'Qwen3Model'})
|
104 |
+
(1): Pooling({'pooling_mode_lasttoken': True, 'include_prompt': True})
|
105 |
+
(2): Normalize()
|
106 |
+
)
|
107 |
+
```
|
108 |
+
|
109 |
+
## Citation
|
110 |
+
|
111 |
+
```bibtex
|
112 |
+
@misc{qwen3-italian-retrieval-2024,
|
113 |
+
title={Fine-tuned Qwen3-Embedding for Italian-English Cross-Lingual Semantic Retrieval},
|
114 |
+
year={2024},
|
115 |
+
howpublished={\\url{https://huggingface.co/your-model-name}}
|
116 |
+
}
|
117 |
+
```
|
118 |
+
|
119 |
+
## Acknowledgments
|
120 |
+
|
121 |
+
This work builds upon the Qwen3-Embedding architecture and advances in contrastive learning for dense retrieval. We acknowledge the contributions of the Qwen team and the sentence-transformers community.
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
**License**: Inherits licensing terms from the base Qwen/Qwen3-Embedding-0.6B model.
|