DeepMount00
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -33,6 +33,37 @@ The performance of Qwen2 1.5B was evaluated on several benchmarks and compared a
|
|
33 |
| Qwen2-1.5B-Ita | 1.5B | **43.98** | **51.45** | 32.34 | 48.15 |
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
### Conclusion
|
38 |
|
|
|
33 |
| Qwen2-1.5B-Ita | 1.5B | **43.98** | **51.45** | 32.34 | 48.15 |
|
34 |
|
35 |
|
36 |
+
## How to Use
|
37 |
+
|
38 |
+
```python
|
39 |
+
import torch
|
40 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
+
|
42 |
+
model_name = "DeepMount00/Qwen2-1.5B-Ita"
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
model_name,
|
47 |
+
torch_dtype=torch.bfloat16,
|
48 |
+
device_map="auto",
|
49 |
+
)
|
50 |
+
|
51 |
+
prompt = [{'role': 'user', 'content': """Marco ha comprato 5 scatole di cioccolatini. Ogni scatola contiene 12 cioccolatini. Ha deciso di dare 3 cioccolatini a ciascuno dei suoi 7 amici. Quanti cioccolatini gli rimarranno dopo averli distribuiti ai suoi amici?"""}]
|
52 |
+
inputs = tokenizer.apply_chat_template(
|
53 |
+
prompt,
|
54 |
+
add_generation_prompt=True,
|
55 |
+
return_tensors='pt'
|
56 |
+
)
|
57 |
+
tokens = model.generate(
|
58 |
+
inputs.to(model.device),
|
59 |
+
max_new_tokens=1024,
|
60 |
+
temperature=0.001,
|
61 |
+
do_sample=True
|
62 |
+
)
|
63 |
+
|
64 |
+
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
|
65 |
+
```
|
66 |
+
|
67 |
|
68 |
### Conclusion
|
69 |
|