File size: 13,277 Bytes
d187b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy import stats
import os
def set_style():
"""Set the style for all plots"""
# Use a basic style instead of seaborn
plt.style.use('default')
# Custom style settings
plt.rcParams['figure.figsize'] = (12, 6)
plt.rcParams['font.size'] = 10
plt.rcParams['axes.titlesize'] = 14
plt.rcParams['axes.labelsize'] = 12
plt.rcParams['axes.grid'] = True
plt.rcParams['grid.alpha'] = 0.3
# Custom color palette
colors = ['#FF9999', '#66B2FF', '#99FF99', '#FFCC99', '#FF99CC', '#99FFCC', '#FFB366']
return colors
def create_language_distribution_plot(df, lang_dist, lang_percent, colors, image_dir):
"""Create and save language distribution plot"""
plt.figure(figsize=(14, 8))
# Create bar positions
x = np.arange(len(lang_dist))
# Create bars with language names as x-ticks
bars = plt.bar(x, lang_dist.values, color=colors)
plt.title('Language Distribution in Multilingual Toxic Comment Dataset', pad=20)
plt.xlabel('Language', labelpad=10)
plt.ylabel('Number of Comments', labelpad=10)
# Set x-ticks to language names
plt.xticks(x, lang_dist.index, rotation=45)
# Add value labels on top of each bar with increased spacing
for i, bar in enumerate(bars):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + (max(lang_dist.values) * 0.01),
f'{int(height):,}\n({lang_percent.values[i]:.1f}%)',
ha='center', va='bottom', fontsize=10)
# Add some padding to the top of the plot
plt.margins(y=0.2)
plt.tight_layout()
plt.savefig(os.path.join(image_dir, 'language_distribution.png'), dpi=300, bbox_inches='tight')
plt.close()
def create_toxicity_heatmap(df, toxicity_cols, image_dir):
"""Create and save toxicity correlation heatmap"""
plt.figure(figsize=(12, 10))
# Calculate correlation and sort
correlation = df[toxicity_cols].corr()
# Sort correlation matrix by mean correlation value
mean_corr = correlation.mean()
sorted_cols = mean_corr.sort_values(ascending=False).index
correlation = correlation.loc[sorted_cols, sorted_cols]
# Create heatmap with better styling
im = plt.imshow(correlation, cmap='RdYlBu_r', aspect='equal', vmin=0, vmax=1)
plt.colorbar(im, label='Correlation Coefficient')
# Add text annotations with conditional formatting
for i in range(len(correlation)):
for j in range(len(correlation)):
corr_value = correlation.iloc[i, j]
# Choose text color based on background
text_color = 'white' if abs(corr_value) > 0.7 else 'black'
# Make diagonal elements bold
fontweight = 'bold' if i == j else 'normal'
plt.text(j, i, f'{corr_value:.2f}',
ha='center', va='center',
color=text_color,
fontweight=fontweight,
fontsize=10)
# Improve title and labels
plt.title('Correlation between Different Types of Toxicity\n(Sorted by Average Correlation)',
pad=20, fontsize=14)
# Format axis labels
formatted_labels = [col.replace('_', ' ').title() for col in correlation.columns]
plt.xticks(range(len(formatted_labels)), formatted_labels, rotation=45, ha='right')
plt.yticks(range(len(formatted_labels)), formatted_labels)
# Add gridlines
plt.grid(False)
# Adjust layout
plt.tight_layout()
plt.savefig(os.path.join(image_dir, 'toxicity_correlation.png'), dpi=300, bbox_inches='tight')
plt.close()
def create_toxicity_by_language_plot(df, lang_dist, toxicity_cols, colors, image_dir):
"""Create and save toxicity distribution by language plot"""
plt.figure(figsize=(15, 8))
x = np.arange(len(lang_dist.index))
width = 0.15
multiplier = 0
for attribute, color in zip(toxicity_cols, colors):
# Calculate percentage of toxic comments (any value > 0)
attribute_means = [(df[df['lang'] == lang][attribute] > 0).mean() * 100
for lang in lang_dist.index]
offset = width * multiplier
rects = plt.bar(x + offset, attribute_means, width,
label=attribute.replace('_', ' ').title(),
color=color, alpha=0.8)
# Add value labels on the bars
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width()/2., height,
f'{height:.1f}%', ha='center', va='bottom', fontsize=8)
multiplier += 1
plt.xlabel('Language')
plt.ylabel('Percentage of Toxic Comments (%)')
plt.title('Distribution of Toxicity Types by Language')
plt.xticks(x + width * 2.5, lang_dist.index, rotation=45)
plt.legend(loc='upper right', bbox_to_anchor=(1, 1))
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig(os.path.join(image_dir, 'toxicity_by_language.png'), dpi=300, bbox_inches='tight')
plt.close()
def create_class_distribution_plot(df, lang_dist, image_dir):
"""Create and save class distribution across languages plot"""
plt.figure(figsize=(16, 10))
# Define toxicity columns and their display names
toxicity_cols = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
display_names = [col.replace('_', ' ').title() for col in toxicity_cols]
# Calculate class distribution for each language
class_dist = {}
non_toxic_dist = {} # Store non-toxic percentages
for lang in lang_dist.index:
lang_df = df[df['lang'] == lang]
total = len(lang_df)
# Create a binary matrix of toxicity flags
toxic_matrix = lang_df[toxicity_cols].astype(bool)
# Calculate non-toxic percentage (comments with no toxic flags)
non_toxic_mask = ~toxic_matrix.any(axis=1)
non_toxic_percent = (non_toxic_mask.sum() / total) * 100
non_toxic_dist[lang] = non_toxic_percent
# Calculate percentages for each toxicity type
class_dist[lang] = [(toxic_matrix[col].sum() / total) * 100 for col in toxicity_cols]
# Create stacked bar chart
x = np.arange(len(lang_dist.index))
# Use a color scheme with an additional color for non-toxic
colors = plt.cm.Set3(np.linspace(0, 1, len(toxicity_cols) + 1))
# First, plot non-toxic comments
non_toxic_values = [non_toxic_dist[lang] for lang in lang_dist.index]
non_toxic_bar = plt.bar(x, non_toxic_values, label='Non-Toxic', color=colors[0], alpha=0.9)
# Add percentage labels for non-toxic
for j, v in enumerate(non_toxic_values):
if v > 1: # Show all values above 1%
plt.text(x[j], v/2, f'{v:.1f}%',
ha='center', va='center',
color='black',
fontweight='bold',
fontsize=9)
# Initialize bottom array with non-toxic values
bottom = np.array(non_toxic_values)
# Then plot toxic categories
bars = [non_toxic_bar]
for i, (col, display_name) in enumerate(zip(toxicity_cols, display_names)):
values = [class_dist[lang][i] for lang in lang_dist.index]
bar = plt.bar(x, values, bottom=bottom, label=display_name, color=colors[i+1], alpha=0.9)
bars.append(bar)
# Add percentage labels for all values > 1%
for j, v in enumerate(values):
if v > 1: # Show all values above 1%
center = bottom[j] + v/2
text_color = 'black' if v > 10 else 'black'
plt.text(x[j], center, f'{v:.1f}%',
ha='center', va='center',
color=text_color,
fontweight='bold',
fontsize=9)
bottom = bottom + np.array(values) # Update bottom array correctly
plt.xlabel('Language', labelpad=10, fontsize=12)
plt.ylabel('Percentage of Comments', labelpad=10, fontsize=12)
plt.title('Distribution of Non-Toxic and Toxic Comments by Language', pad=20, fontsize=14)
plt.xticks(x, lang_dist.index, rotation=45, fontsize=10)
# Adjust legend
plt.legend(title='Comment Types',
bbox_to_anchor=(1.15, 1),
loc='upper left',
fontsize=10,
title_fontsize=12)
# Add grid for better readability
plt.grid(True, axis='y', alpha=0.3)
# Adjust layout to prevent label cutoff
plt.margins(y=0.1)
plt.tight_layout()
plt.savefig(os.path.join(image_dir, 'class_distribution.png'), dpi=300, bbox_inches='tight')
plt.close()
def analyze_language_distribution():
"""Analyze language distribution and toxicity patterns in the dataset"""
# Create images directory if it doesn't exist
image_dir = 'images'
os.makedirs(image_dir, exist_ok=True)
# Set style and get color palette
colors = set_style()
# Read the dataset
print("Reading dataset...")
input_file = 'dataset/split/train.csv'
df = pd.read_csv(input_file)
# Get language distribution
lang_dist = df['lang'].value_counts()
lang_percent = df['lang'].value_counts(normalize=True) * 100
# Print basic statistics
print("\nDataset Overview:")
print("-" * 50)
print("Input file: ", input_file)
print(f"Total number of comments: {len(df):,}")
print(f"Number of languages: {df['lang'].nunique()}")
print("\nLanguage Distribution:")
print("-" * 50)
for lang, count in lang_dist.items():
print(f"{lang}: {count:,} comments ({lang_percent[lang]:.2f}%)")
# Create language distribution plot
create_language_distribution_plot(df, lang_dist, lang_percent, colors, image_dir)
# Analyze toxicity
toxicity_cols = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
# Create correlation heatmap
create_toxicity_heatmap(df, toxicity_cols, image_dir)
# Create toxicity by language plot
create_toxicity_by_language_plot(df, lang_dist, toxicity_cols, colors, image_dir)
# Create class distribution plot
create_class_distribution_plot(df, lang_dist, image_dir)
# Print class distribution statistics
print("\nClass Distribution by Language:")
print("-" * 50)
for lang in lang_dist.index:
lang_df = df[df['lang'] == lang]
total = len(lang_df)
print(f"\n{lang.upper()} (Total: {total:,} comments)")
# Count comments by number of toxic classes
toxic_counts = lang_df[toxicity_cols].astype(bool).sum(axis=1)
class_dist = toxic_counts.value_counts().sort_index()
for n_classes, count in class_dist.items():
percentage = (count / total) * 100
print(f"{n_classes} toxic classes: {count:,} ({percentage:.2f}%)")
# Detailed toxicity analysis by language
print("\nDetailed Toxicity Analysis by Language:")
print("-" * 50)
for lang in lang_dist.index:
lang_df = df[df['lang'] == lang]
print(f"\n{lang.upper()} (Total: {len(lang_df):,} comments)")
# Calculate toxicity statistics
for col in toxicity_cols:
toxic_count = (lang_df[col] > 0).sum()
toxic_percent = (toxic_count / len(lang_df)) * 100
# Calculate confidence interval
ci = stats.norm.interval(0.95,
loc=toxic_percent/100,
scale=np.sqrt((toxic_percent/100 * (1-toxic_percent/100)) / len(lang_df)))
ci_lower, ci_upper = ci[0] * 100, ci[1] * 100
print(f"- {col.replace('_', ' ').title()}:")
print(f" Count: {toxic_count:,} ({toxic_percent:.2f}%)")
print(f" 95% CI: [{ci_lower:.2f}%, {ci_upper:.2f}%]")
# Statistical tests
print("\nStatistical Analysis:")
print("-" * 50)
# Chi-square test for independence between language and number of toxic classes
toxic_class_counts = pd.crosstab(df['lang'], df[toxicity_cols].astype(bool).sum(axis=1))
chi2, p_value, _, _ = stats.chi2_contingency(toxic_class_counts)
print("\nChi-square test for number of toxic classes by language:")
print(f"Chi-square statistic: {chi2:.2f}")
print(f"p-value: {p_value:.10f}")
print(f"Significant at α=0.05: {'Yes' if p_value < 0.05 else 'No'}")
# Chi-square test for each toxicity type
for col in toxicity_cols:
binary_col = (df[col] > 0).astype(int)
contingency_table = pd.crosstab(df['lang'], binary_col)
chi2, p_value, _, _ = stats.chi2_contingency(contingency_table)
print(f"\nChi-square test for {col.replace('_', ' ').title()}:")
print(f"Chi-square statistic: {chi2:.2f}")
print(f"p-value: {p_value:.10f}")
print(f"Significant at α=0.05: {'Yes' if p_value < 0.05 else 'No'}")
if __name__ == "__main__":
analyze_language_distribution() |