File size: 18,119 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig
)
import pandas as pd
import numpy as np
from tqdm import tqdm
from pathlib import Path
import logging
import gc
from typing import List, Dict
import json
from datetime import datetime
import time
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import joblib
import random

# Create log directories
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)

# Get timestamp for log file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"generation_{timestamp}.log"

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s | %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler(log_file)
    ]
)

logger = logging.getLogger(__name__)
logger.info(f"Starting new run. Log file: {log_file}")

class FastToxicValidator:
    """Fast toxicity validation using logistic regression"""
    def __init__(self, model_path: str = "weights/toxic_validator.joblib"):
        self.model_path = model_path
        if Path(model_path).exists():
            logger.info("Loading fast toxic validator...")
            model_data = joblib.load(model_path)
            self.vectorizers = model_data['vectorizers']
            self.models = model_data['models']
            logger.info("✓ Fast validator loaded")
        else:
            logger.info("Training fast toxic validator...")
            self._train_validator()
            logger.info("✓ Fast validator trained and saved")
    
    def _train_validator(self):
        """Train logistic regression models for each toxicity type"""
        # Load training data
        train_df = pd.read_csv("dataset/split/train.csv")
        
        # Labels to validate
        labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
        
        self.vectorizers = {}
        self.models = {}
        
        # Train a model for each label
        for label in labels:
            # Create and fit vectorizer
            vectorizer = TfidfVectorizer(
                max_features=10000,
                ngram_range=(1, 2),
                strip_accents='unicode',
                min_df=2
            )
            X = vectorizer.fit_transform(train_df['comment_text'].fillna(''))
            y = train_df[label]
            
            # Train model
            model = LogisticRegression(
                C=1.0,
                class_weight='balanced',
                max_iter=200,
                n_jobs=-1
            )
            model.fit(X, y)
            
            self.vectorizers[label] = vectorizer
            self.models[label] = model
        
        # Save models
        joblib.dump({
            'vectorizers': self.vectorizers,
            'models': self.models
        }, self.model_path)

    def get_probabilities(self, texts: List[str], label: str) -> np.ndarray:
        """Get raw probabilities for a specific label"""
        X = self.vectorizers[label].transform(texts)
        return self.models[label].predict_proba(X)[:, 1]

    def validate(self, texts: List[str], label: str, threshold: float = 0.5) -> List[bool]:
        """Validate texts using the fast model with a lower threshold of 0.5"""
        # Vectorize texts
        X = self.vectorizers[label].transform(texts)
        
        # Get probabilities
        probs = self.models[label].predict_proba(X)[:, 1]
        
        # Return boolean mask with lower threshold
        return probs >= threshold

class ToxicAugmenter:
    def __init__(self):
        logger.info("Initializing ToxicAugmenter...")
        
        # Initialize generation buffer
        self.generation_buffer = []
        self.buffer_size = 100
        
        # Multi-GPU setup
        self.num_gpus = torch.cuda.device_count()
        if self.num_gpus > 0:
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True
            logger.info(f"Found {self.num_gpus} GPUs:")
            for i in range(self.num_gpus):
                mem = torch.cuda.get_device_properties(i).total_memory / 1024**3
                logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)} ({mem:.1f}GB)")
        
        # Load models with optimized settings
        logger.info("Loading Mistral-7B...")
        
        # Configure model for multi-GPU with optimized settings
        quantization_config = BitsAndBytesConfig(
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )
        
        # Initialize tokenizer first
        self.llm_tokenizer = AutoTokenizer.from_pretrained(
            "mistralai/Mistral-7B-Instruct-v0.3",
            padding_side="left",
            use_fast=True,
            model_max_length=512,  # Limit context size for faster processing
            pad_token="</s>",  # Set pad token explicitly
            add_eos_token=True,
            add_bos_token=True
        )
        
        # Set pad token id explicitly
        self.llm_tokenizer.pad_token = self.llm_tokenizer.eos_token
        self.llm_tokenizer.pad_token_id = self.llm_tokenizer.eos_token_id
        
        # Now initialize model with tokenizer's pad token
        self.llm = AutoModelForCausalLM.from_pretrained(
            "mistralai/Mistral-7B-Instruct-v0.3",
            device_map="balanced",
            torch_dtype=torch.float16,
            quantization_config=quantization_config,
            max_memory={0: "22GB", 1: "22GB"},
            use_cache=True,  # Enable KV cache for faster generation
            pad_token_id=self.llm_tokenizer.pad_token_id
        )
        
        logger.info("✓ Mistral-7B loaded")
        
        # Initialize validator
        self.validator = FastToxicValidator()
        logger.info("✓ Fast validator initialized")

    def generate_prompt(self, seed_text: str, label: str) -> str:
        """Generate a prompt for a single toxicity type"""
        base_prompt = """<s>[INST] You are tasked with generating a highly {type} comment. Your goal is to create content that would definitely be flagged as {type}.

Example for reference (generate something different): "{seed_text}"

Requirements:
- Must be extremely {type} in nature
- Use very strong language
- Must be different from the example

Generate ONLY the {type} comment (no explanations): [/INST]"""

        type_mapping = {
            'toxic': 'toxic and offensive',
            'severe_toxic': 'toxic and hostile',
            'obscene': 'obscene and vulgar',
            'threat': 'threatening and intimidating',
            'insult': 'insulting and demeaning',
            'identity_hate': 'discriminatory and hateful'
        }

        return base_prompt.format(type=type_mapping[label], seed_text=seed_text)

    def flush_buffer(self):
        """Flush the generation buffer to disk"""
        if self.generation_buffer:
            try:
                with open(log_file, 'a', encoding='utf-8') as f:
                    for entry in self.generation_buffer:
                        f.write(json.dumps(entry, ensure_ascii=False) + '\n')
                self.generation_buffer = []
            except Exception as e:
                logger.error(f"Failed to flush buffer: {str(e)}")

    def log_generation(self, seed_text: str, prompt: str, generated_text: str, validation_results: Dict[str, bool]):
        """Buffer log generation details with proper JSON serialization"""
        # Convert numpy/torch boolean values to Python booleans
        serializable_results = {
            k: bool(v) for k, v in validation_results.items()
        }
        
        log_entry = {
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "seed_text": seed_text,
            "prompt": prompt,
            "generated_text": generated_text,
            "validation_results": serializable_results
        }
        
        self.generation_buffer.append(log_entry)
        
        # Flush buffer if it reaches the size limit
        if len(self.generation_buffer) >= self.buffer_size:
            self.flush_buffer()

    def validate_sample(self, text: str, label: str, attempts: int) -> bool:
        """Validate a generated sample for a single label"""
        try:
            # Get probability for the label
            prob = self.validator.get_probabilities([text], label)[0]
            
            # Super lenient thresholds to get samples
            thresholds = {
                'toxic': 0.3,        # Very lenient to get started
                'severe_toxic': 0.2,
                'obscene': 0.2,
                'threat': 0.2,
                'insult': 0.2,
                'identity_hate': 0.2
            }
            threshold = thresholds.get(label, 0.2)
            
            # Log validation result
            passed = prob >= threshold
            if passed or (attempts % 5 == 0):  # More frequent logging
                logger.info(f"\nValidation - Label: {label}, Text: {text}")
                logger.info(f"Probability: {prob:.3f}, Threshold: {threshold:.2f}, Passed: {passed}")
            
            return passed
            
        except Exception as e:
            logger.error(f"Validation error: {str(e)}")
            return False

    def generate_samples(self, target_samples: int, label: str,
                        seed_texts: List[str], total_timeout: int = 300) -> pd.DataFrame:
        """Generate samples for a single label with timeouts"""
        start_time = time.time()
        generated_samples = []
        attempts = 0
        max_attempts = target_samples * 50  # Much more attempts allowed
        batch_size = min(16, target_samples)  # Smaller batch size for better control
        
        pbar = tqdm(total=target_samples, desc=f"Generating {label} samples")
        
        try:
            while len(generated_samples) < target_samples and attempts < max_attempts:
                # Check timeout
                if time.time() - start_time > total_timeout:
                    logger.warning(f"Generation timed out after {total_timeout} seconds")
                    break
                
                attempts += 1
                
                # Select random seed text and generate prompt
                seed_text = random.choice(seed_texts)
                prompt = self.generate_prompt(seed_text, label)
                
                try:
                    # Generate text with optimized parameters
                    inputs = self.llm_tokenizer(prompt, return_tensors="pt", padding=True, 
                                              truncation=True, max_length=512).to(self.llm.device)
                    
                    with torch.no_grad():
                        outputs = self.llm.generate(
                            **inputs,
                            max_new_tokens=200,     # Doubled for longer content
                            num_beams=4,            # Added beam search
                            temperature=1.35,       # Higher temperature for more randomness
                            do_sample=True,
                            top_p=0.99,            # Almost no filtering
                            top_k=200,             # More options
                            num_return_sequences=1,
                            repetition_penalty=1.0, # No repetition penalty
                            no_repeat_ngram_size=0, # No ngram blocking
                            early_stopping=True,    # Stop when complete
                            pad_token_id=self.llm_tokenizer.pad_token_id,
                            bos_token_id=self.llm_tokenizer.bos_token_id,
                            eos_token_id=self.llm_tokenizer.eos_token_id,
                            use_cache=True
                        )
                    
                    text = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
                    
                    # Extract the generated text after [/INST]
                    if "[/INST]" in text:
                        output = text.split("[/INST]")[1].strip()
                        output = output.strip().strip('"').strip("'")
                        
                        # Only check minimum length
                        if len(output) >= 10:
                            # Log generation attempt
                            if attempts % 5 == 0:  # More frequent logging
                                logger.info(f"\nAttempt {attempts}: Generated text: {output}")
                            
                            # Validate sample
                            if self.validate_sample(output, label, attempts):
                                sample_dict = {'comment_text': output}
                                for l in ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']:
                                    sample_dict[l] = 1 if l == label else 0
                                generated_samples.append(sample_dict)
                                pbar.update(1)
                                logger.info(f"✓ Valid {label} sample generated ({len(generated_samples)}/{target_samples})")
                        
                except Exception as e:
                    logger.error(f"Generation error on attempt {attempts}: {str(e)}")
                    continue
                
                # Clear cache less frequently
                if attempts % 200 == 0:
                    torch.cuda.empty_cache()
                    gc.collect()
        
        finally:
            pbar.close()
            logger.info(f"Generation finished: {len(generated_samples)}/{target_samples} samples in {attempts} attempts")
            
            # Return results even if partial
            if generated_samples:
                return pd.DataFrame(generated_samples)
            return None

    def augment_dataset(self, target_samples: int, label: str, seed_texts: List[str], timeout_minutes: int = 5) -> pd.DataFrame:
        """Generate a specific number of samples with given label combination"""
        logger.info(f"\nGenerating {target_samples} samples with label: {label}")
        
        generated_samples = []
        batch_size = min(32, target_samples)
        start_time = time.time()
        timeout_seconds = min(timeout_minutes * 60, 300)  # Hard limit of 5 minutes
        total_generated = 0
        pbar = None
        
        try:
            # Create progress bar
            pbar = tqdm(
                total=target_samples,
                desc="Generating",
                unit="samples",
                ncols=100,
                bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]'
            )
            
            while total_generated < target_samples:
                # Check timeout
                elapsed_time = time.time() - start_time
                if elapsed_time > timeout_seconds:
                    logger.warning(f"Time limit reached after {elapsed_time/60:.1f} minutes")
                    break
                
                # Calculate remaining samples needed
                remaining = target_samples - total_generated
                current_batch_size = min(batch_size, remaining)
                
                # Select batch of seed texts
                batch_seeds = np.random.choice(seed_texts, size=current_batch_size)
                prompts = [self.generate_prompt(seed, label) for seed in batch_seeds]
                
                # Generate and validate samples
                batch_start = time.time()
                new_samples = self.generate_samples(
                    target_samples=current_batch_size,
                    label=label,
                    seed_texts=batch_seeds,
                    total_timeout=timeout_seconds - elapsed_time
                )
                
                if new_samples is not None and not new_samples.empty:
                    if len(new_samples) > remaining:
                        new_samples = new_samples.head(remaining)
                    
                    generated_samples.append(new_samples)
                    num_new = len(new_samples)
                    total_generated += num_new
                    
                    # Update progress bar
                    pbar.update(num_new)
                    
                    # Calculate and display metrics
                    elapsed_minutes = elapsed_time / 60
                    rate = total_generated / elapsed_minutes if elapsed_minutes > 0 else 0
                    batch_time = time.time() - batch_start
                    time_remaining = max(0, timeout_seconds - elapsed_time)
                    
                    pbar.set_postfix({
                        'rate': f'{rate:.1f}/min',
                        'batch': f'{batch_time:.1f}s',
                        'remain': f'{time_remaining:.0f}s'
                    }, refresh=True)
                
                # Memory management every few batches
                if total_generated % (batch_size * 4) == 0:
                    torch.cuda.empty_cache()
            
            # Combine all generated samples
            if generated_samples:
                final_df = pd.concat(generated_samples, ignore_index=True)
                if len(final_df) > target_samples:
                    final_df = final_df.head(target_samples)
                logger.info(f"Successfully generated {len(final_df)} samples in {elapsed_time/60:.1f} minutes")
                return final_df
            
            return None
            
        except Exception as e:
            logger.error(f"Generation error: {str(e)}")
            return None
        finally:
            if pbar is not None:
                pbar.close()
            # Final cleanup
            self.flush_buffer()
            torch.cuda.empty_cache()