File size: 5,543 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Toxic Comment Classification using Deep Learning

A multilingual toxic comment classification system using language-aware transformers and advanced deep learning techniques.

## πŸ—οΈ Architecture Overview

### Core Components

1. **LanguageAwareTransformer**
   - Base: XLM-RoBERTa Large
   - Custom language-aware attention mechanism
   - Gating mechanism for feature fusion
   - Language-specific dropout rates
   - Support for 7 languages with English fallback

2. **ToxicDataset**
   - Efficient caching system
   - Language ID mapping
   - Memory pinning for CUDA optimization
   - Automatic handling of missing values

3. **Training System**
   - Mixed precision training (BF16/FP16)
   - Gradient accumulation
   - Language-aware loss weighting
   - Distributed training support
   - Automatic threshold optimization

### Key Features

- **Language Awareness**
  - Language-specific embeddings
  - Dynamic dropout rates per language
  - Language-aware attention mechanism
  - Automatic fallback to English for unsupported languages

- **Performance Optimization**
  - Gradient checkpointing
  - Memory-efficient attention
  - Automatic mixed precision
  - Caching system for processed data
  - CUDA optimization with memory pinning

- **Training Features**
  - Weighted focal loss with language awareness
  - Dynamic threshold optimization
  - Early stopping with patience
  - Gradient flow monitoring
  - Comprehensive metric tracking

## πŸ“Š Data Processing

### Input Format
```python
{
    'comment_text': str,  # The text to classify
    'lang': str,          # Language code (en, ru, tr, es, fr, it, pt)
    'toxic': int,         # Binary labels for each category
    'severe_toxic': int,
    'obscene': int,
    'threat': int,
    'insult': int,
    'identity_hate': int
}
```

### Language Support
- Primary: en, ru, tr, es, fr, it, pt
- Default fallback: en (English)
- Language ID mapping: {en: 0, ru: 1, tr: 2, es: 3, fr: 4, it: 5, pt: 6}

## πŸš€ Model Architecture

### Base Model
- XLM-RoBERTa Large
- Hidden size: 1024
- Attention heads: 16
- Max sequence length: 128

### Custom Components

1. **Language-Aware Classifier**
```python
- Input: Hidden states [batch_size, hidden_size]
- Language embeddings: [batch_size, 64]
- Projection: hidden_size + 64 -> 512
- Output: 6 toxicity predictions
```

2. **Language-Aware Attention**
```python
- Input: Hidden states + Language embeddings
- Scaled dot product attention
- Gating mechanism for feature fusion
- Memory-efficient implementation
```

## πŸ› οΈ Training Configuration

### Hyperparameters
```python
{
    "batch_size": 32,
    "grad_accum_steps": 2,
    "epochs": 4,
    "lr": 2e-5,
    "weight_decay": 0.01,
    "warmup_ratio": 0.1,
    "label_smoothing": 0.01,
    "model_dropout": 0.1,
    "freeze_layers": 2
}
```

### Optimization
- Optimizer: AdamW
- Learning rate scheduler: Cosine with warmup
- Mixed precision: BF16/FP16
- Gradient clipping: 1.0
- Gradient accumulation steps: 2

## πŸ“ˆ Metrics and Monitoring

### Training Metrics
- Loss (per language)
- AUC-ROC (macro)
- Precision, Recall, F1
- Language-specific metrics
- Gradient norms
- Memory usage

### Validation Metrics
- AUC-ROC (per class and language)
- Optimal thresholds per language
- Critical class performance (threat, identity_hate)
- Distribution shift monitoring

## πŸ”§ Usage

### Training
```bash
python model/train.py
```

### Inference
```python
from model.predict import predict_toxicity

results = predict_toxicity(
    text="Your text here",
    model=model,
    tokenizer=tokenizer,
    config=config
)
```

## πŸ” Code Structure

```
model/
β”œβ”€β”€ language_aware_transformer.py  # Core model architecture
β”œβ”€β”€ train.py                      # Training loop and utilities
β”œβ”€β”€ predict.py                    # Inference utilities
β”œβ”€β”€ evaluation/
β”‚   β”œβ”€β”€ evaluate.py              # Evaluation functions
β”‚   └── threshold_optimizer.py    # Dynamic threshold optimization
β”œβ”€β”€ data/
β”‚   └── sampler.py               # Custom sampling strategies
└── training_config.py           # Configuration management
```

## πŸ€– AI/ML Specific Notes

1. **Tensor Shapes**
   - Input IDs: [batch_size, seq_len]
   - Attention Mask: [batch_size, seq_len]
   - Language IDs: [batch_size]
   - Hidden States: [batch_size, seq_len, hidden_size]
   - Language Embeddings: [batch_size, embed_dim]

2. **Critical Components**
   - Language ID handling in forward pass
   - Attention mask shape management
   - Memory-efficient attention implementation
   - Gradient flow in language-aware components

3. **Performance Considerations**
   - Cache management for processed data
   - Memory pinning for GPU transfers
   - Gradient accumulation for large batches
   - Language-specific dropout rates

4. **Error Handling**
   - Language ID validation
   - Shape compatibility checks
   - Gradient norm monitoring
   - Device placement verification

## πŸ“ Notes for AI Systems

1. When modifying the code:
   - Maintain language ID handling in forward pass
   - Preserve attention mask shape management
   - Keep device consistency checks
   - Handle BatchEncoding security in PyTorch 2.6+

2. Key attention points:
   - Language ID tensor shape and type
   - Attention mask broadcasting
   - Memory-efficient attention implementation
   - Gradient flow through language-aware components

3. Common pitfalls:
   - Incorrect attention mask shapes
   - Language ID type mismatches
   - Memory leaks in caching
   - Device inconsistencies