Deeptanshuu's picture
Upload folder using huggingface_hub
d187b57 verified
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig
)
from langdetect import detect
import pandas as pd
import numpy as np
from tqdm import tqdm
from pathlib import Path
import logging
import gc
from typing import List
import json
from datetime import datetime, timedelta
import time
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import joblib
# Create log directories
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# Get timestamp for log file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"generation_{timestamp}.log"
# Configure logging once at the start
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler(log_file)
]
)
logger = logging.getLogger(__name__)
logger.info(f"Starting new run. Log file: {log_file}")
def log_separator(message: str = ""):
"""Print a separator line with optional message"""
if message:
logger.info("\n" + "="*40 + f" {message} " + "="*40)
else:
logger.info("\n" + "="*100)
class FastThreatValidator:
"""Fast threat validation using logistic regression"""
def __init__(self, model_path: str = "weights/threat_validator.joblib"):
self.model_path = model_path
if Path(model_path).exists():
logger.info("Loading fast threat validator...")
model_data = joblib.load(model_path)
self.vectorizer = model_data['vectorizer']
self.model = model_data['model']
logger.info("✓ Fast validator loaded")
else:
logger.info("Training fast threat validator...")
self._train_validator()
logger.info("✓ Fast validator trained and saved")
def _train_validator(self):
"""Train a simple logistic regression model for threat detection"""
# Load training data
train_df = pd.read_csv("dataset/split/train.csv")
# Prepare data
X = train_df['comment_text'].fillna('')
y = train_df['threat']
# Create and fit vectorizer
self.vectorizer = TfidfVectorizer(
max_features=10000,
ngram_range=(1, 2),
strip_accents='unicode',
min_df=2
)
X_vec = self.vectorizer.fit_transform(X)
# Train model
self.model = LogisticRegression(
C=1.0,
class_weight='balanced',
max_iter=200,
n_jobs=-1
)
self.model.fit(X_vec, y)
# Save model
joblib.dump({
'vectorizer': self.vectorizer,
'model': self.model
}, self.model_path)
def validate(self, texts: List[str], threshold: float = 0.6) -> List[bool]:
"""Validate texts using the fast model"""
# Vectorize texts
X = self.vectorizer.transform(texts)
# Get probabilities
probs = self.model.predict_proba(X)[:, 1]
# Return boolean mask
return probs >= threshold
class ThreatAugmenter:
def __init__(self, seed_samples_path: str = "dataset/processed/MULTILINGUAL_TOXIC_DATASET_360K_7LANG_FINAL.csv"):
log_separator("INITIALIZATION")
# Use global log file
self.log_file = log_file
# Initialize generation buffer
self.generation_buffer = []
self.buffer_size = 100 # Flush buffer every 100 entries
# Multi-GPU setup
self.num_gpus = torch.cuda.device_count()
if self.num_gpus > 0:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
logger.info(f"Found {self.num_gpus} GPUs:")
for i in range(self.num_gpus):
mem = torch.cuda.get_device_properties(i).total_memory / 1024**3
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)} ({mem:.1f}GB)")
# Load models
log_separator("LOADING MODELS")
logger.info("Loading Mistral-7B...")
# Configure model for multi-GPU
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
self.llm = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
device_map="balanced", # Ensures proper dual GPU usage
torch_dtype=torch.float16,
quantization_config=quantization_config,
max_memory={0: "22GB", 1: "22GB"} # Explicitly set memory limits for each GPU
)
self.llm_tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
padding_side="left",
use_fast=True
)
self.llm_tokenizer.pad_token = self.llm_tokenizer.eos_token
logger.info("✓ Mistral-7B loaded")
# Initialize fast validator
self.validator = FastThreatValidator()
logger.info("✓ Fast validator initialized")
# Load and preprocess data
log_separator("LOADING DATA")
logger.info(f"Loading samples from {seed_samples_path}")
self.seed_df = pd.read_csv(seed_samples_path)
self.en_threat_samples = self.seed_df[
(self.seed_df['lang'] == 'en') &
(self.seed_df['threat'] == 1)
]
logger.info(f"Found {len(self.en_threat_samples)} EN threat samples")
# Optimize batch processing
self.max_batch_size = 48 # Increased batch size
self.prefetch_factor = 4
self.num_workers = 8
# Memory cleanup
torch.cuda.empty_cache()
gc.collect()
log_separator()
def generate_prompt(self, seed_text: str) -> str:
"""Generate a prompt for realistic threatening content"""
return f"""<s>[INST] Generate a threatening social media comment that is realistic and intimidating.
Reference example (generate something different): {seed_text}
Requirements:
- Make it genuinely threatening
- Use authentic social media language
- Keep it under 50 words
- Must be different from example
Generate ONLY the comment: [/INST]"""
def flush_buffer(self):
"""Flush the generation buffer to disk"""
if self.generation_buffer:
try:
with open(self.log_file, 'a', encoding='utf-8') as f:
for entry in self.generation_buffer:
f.write(json.dumps(entry, ensure_ascii=False) + '\n')
self.generation_buffer = []
except Exception as e:
logger.error(f"Failed to flush buffer: {str(e)}")
def log_generation(self, seed_text: str, prompt: str, generated_text: str, is_valid: bool):
"""Buffer log generation details"""
log_entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"seed_text": seed_text,
"prompt": prompt,
"generated_text": generated_text,
"is_valid": is_valid
}
self.generation_buffer.append(log_entry)
# Flush buffer if it reaches the size limit
if len(self.generation_buffer) >= self.buffer_size:
self.flush_buffer()
def generate_samples(self, prompts: List[str], seed_texts: List[str]) -> List[str]:
try:
with torch.amp.autocast('cuda', dtype=torch.float16):
inputs = self.llm_tokenizer(prompts, return_tensors="pt", padding=True,
truncation=True, max_length=256).to(self.llm.device)
outputs = self.llm.generate(
**inputs,
max_new_tokens=32,
temperature=0.95,
do_sample=True,
top_p=0.92,
top_k=50,
num_return_sequences=1,
repetition_penalty=1.15,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
texts = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=False)
cleaned_texts = []
valid_count = 0
# Process responses with minimal logging
for idx, text in enumerate(texts):
if "[/INST]" in text and "</s>" in text:
response = text.split("[/INST]")[1].split("</s>")[0].strip()
response = response.strip().strip('"').strip("'")
word_count = len(response.split())
if (word_count >= 3 and word_count <= 50 and
not any(x in response.lower() for x in [
"generate", "requirements:", "reference",
"[inst]", "example"
])):
cleaned_texts.append(response)
valid_count += 1
# Log only summary statistics
if valid_count > 0:
logger.info(f"\nBatch Success: {valid_count}/{len(texts)} ({valid_count/len(texts)*100:.1f}%)")
return cleaned_texts
except Exception as e:
logger.error(f"Generation error: {str(e)}")
return []
def validate_toxicity(self, texts: List[str]) -> torch.Tensor:
"""Validate texts using fast logistic regression"""
if not texts:
return torch.zeros(0, dtype=torch.bool)
# Get validation mask from fast validator
validation_mask = self.validator.validate(texts)
# Convert to torch tensor
return torch.tensor(validation_mask, dtype=torch.bool, device=self.llm.device)
def validate_language(self, texts: List[str]) -> List[bool]:
"""Simple language validation"""
return [detect(text) == 'en' for text in texts]
def augment_dataset(self, target_samples: int = 500, batch_size: int = 32):
"""Main augmentation loop with progress bar and CSV saving"""
try:
start_time = time.time()
logger.info(f"Starting generation: target={target_samples}, batch_size={batch_size}")
generated_samples = []
stats = {
"total_attempts": 0,
"valid_samples": 0,
"batch_times": []
}
# Create output directory if it doesn't exist
output_dir = Path("dataset/augmented")
output_dir.mkdir(parents=True, exist_ok=True)
# Generate timestamp for the filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = output_dir / f"threat_augmented_{timestamp}.csv"
# Initialize progress bar
pbar = tqdm(total=target_samples,
desc="Generating samples",
unit="samples",
ncols=100,
bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]')
while len(generated_samples) < target_samples:
batch_start = time.time()
seed_texts = self.en_threat_samples['comment_text'].sample(batch_size).tolist()
prompts = [self.generate_prompt(text) for text in seed_texts]
new_samples = self.generate_samples(prompts, seed_texts)
if not new_samples:
continue
# Update statistics
batch_time = time.time() - batch_start
stats["batch_times"].append(batch_time)
stats["total_attempts"] += len(new_samples)
prev_len = len(generated_samples)
generated_samples.extend(new_samples)
stats["valid_samples"] = len(generated_samples)
# Update progress bar
pbar.update(len(generated_samples) - prev_len)
# Calculate and display success rate periodically
if len(stats["batch_times"]) % 10 == 0: # Every 10 batches
success_rate = (stats["valid_samples"] / stats["total_attempts"]) * 100
avg_batch_time = sum(stats["batch_times"][-20:]) / min(len(stats["batch_times"]), 20)
pbar.set_postfix({
'Success Rate': f'{success_rate:.1f}%',
'Batch Time': f'{avg_batch_time:.2f}s'
})
# Cleanup
if len(generated_samples) % (batch_size * 5) == 0:
torch.cuda.empty_cache()
gc.collect()
# Close progress bar
pbar.close()
# Create DataFrame and save to CSV
df = pd.DataFrame({
'text': generated_samples[:target_samples],
'label': 1, # These are all threat samples
'source': 'augmented',
'timestamp': timestamp
})
# Save to CSV
df.to_csv(output_file, index=False)
logger.info(f"\nSaved {len(df)} samples to {output_file}")
# Final stats
total_time = str(timedelta(seconds=int(time.time() - start_time)))
logger.info(f"Generation complete: {len(generated_samples)} samples generated in {total_time}")
return df
except Exception as e:
logger.error(f"Generation failed: {str(e)}")
raise
if __name__ == "__main__":
torch.cuda.empty_cache()
gc.collect()
augmenter = ThreatAugmenter()
augmented_df = augmenter.augment_dataset(target_samples=500)