|
|
|
import sys |
|
class ModuleProtector: |
|
def __init__(self, module_name): |
|
self.module_name = module_name |
|
self.original_module = sys.modules.get(module_name) |
|
|
|
def __enter__(self): |
|
if self.module_name in sys.modules: |
|
self.original_module = sys.modules[self.module_name] |
|
sys.modules[self.module_name] = None |
|
|
|
def __exit__(self, *args): |
|
if self.original_module is not None: |
|
sys.modules[self.module_name] = self.original_module |
|
|
|
|
|
with ModuleProtector('torch.classes'): |
|
import streamlit as st |
|
|
|
|
|
st.set_page_config( |
|
page_title="Multilingual Toxicity Analyzer", |
|
page_icon="", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
|
|
import torch |
|
import os |
|
import plotly.graph_objects as go |
|
import pandas as pd |
|
from model.inference_optimized import OptimizedToxicityClassifier |
|
import langid |
|
from typing import List, Dict |
|
import time |
|
import psutil |
|
import platform |
|
try: |
|
import cpuinfo |
|
except ImportError: |
|
cpuinfo = None |
|
from streamlit_extras.colored_header import colored_header |
|
from streamlit_extras.add_vertical_space import add_vertical_space |
|
from streamlit_extras.stylable_container import stylable_container |
|
from streamlit_extras.card import card |
|
from streamlit_extras.metric_cards import style_metric_cards |
|
|
|
|
|
ONNX_MODEL_PATH = os.environ.get("ONNX_MODEL_PATH", "weights/toxic_classifier.onnx") |
|
PYTORCH_MODEL_DIR = os.environ.get("PYTORCH_MODEL_DIR", "weights/toxic_classifier_xlm-roberta-large") |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def get_gpu_info(): |
|
if DEVICE == "cuda": |
|
try: |
|
gpu_name = torch.cuda.get_device_name(0) |
|
gpu_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3 |
|
gpu_memory_allocated = torch.cuda.memory_allocated(0) / 1024**3 |
|
cuda_version = torch.version.cuda |
|
|
|
memory_info = f"{gpu_memory_allocated:.1f}/{gpu_memory_total:.1f} GB" |
|
return f"{gpu_name} (CUDA {cuda_version}, Memory: {memory_info})" |
|
except Exception as e: |
|
return "CUDA device" |
|
return "CPU" |
|
|
|
|
|
def get_cpu_info(): |
|
try: |
|
cpu_percent = psutil.cpu_percent(interval=0.1) |
|
cpu_count = psutil.cpu_count(logical=True) |
|
cpu_freq = psutil.cpu_freq() |
|
|
|
if cpu_freq: |
|
freq_info = f"{cpu_freq.current/1000:.2f} GHz" |
|
else: |
|
freq_info = "Unknown" |
|
|
|
|
|
cpu_model = None |
|
|
|
|
|
try: |
|
with open('/proc/cpuinfo', 'r') as f: |
|
for line in f: |
|
if 'model name' in line: |
|
cpu_model = line.split(':', 1)[1].strip() |
|
break |
|
except: |
|
pass |
|
|
|
|
|
if not cpu_model: |
|
cpu_model = platform.processor() |
|
|
|
|
|
if not cpu_model or cpu_model == '': |
|
cpu_model = platform.machine() |
|
|
|
|
|
if not cpu_model or cpu_model == '': |
|
try: |
|
import cpuinfo |
|
cpu_model = cpuinfo.get_cpu_info()['brand_raw'] |
|
except: |
|
pass |
|
|
|
|
|
if cpu_model: |
|
|
|
replacements = [ |
|
'(R)', '(TM)', '(r)', '(tm)', 'CPU', '@', ' ', 'Processor' |
|
] |
|
for r in replacements: |
|
cpu_model = cpu_model.replace(r, ' ') |
|
|
|
cpu_model = ' '.join(cpu_model.split()) |
|
|
|
if len(cpu_model) > 40: |
|
cpu_model = cpu_model[:37] + "..." |
|
else: |
|
cpu_model = "Unknown CPU" |
|
|
|
return { |
|
"name": cpu_model, |
|
"cores": cpu_count, |
|
"freq": freq_info, |
|
"usage": f"{cpu_percent:.1f}%" |
|
} |
|
except Exception as e: |
|
return { |
|
"name": "CPU", |
|
"cores": "Unknown", |
|
"freq": "Unknown", |
|
"usage": "Unknown" |
|
} |
|
|
|
|
|
def get_ram_info(): |
|
try: |
|
ram = psutil.virtual_memory() |
|
ram_total = ram.total / (1024**3) |
|
ram_used = ram.used / (1024**3) |
|
ram_percent = ram.percent |
|
|
|
return { |
|
"total": f"{ram_total:.1f} GB", |
|
"used": f"{ram_used:.1f} GB", |
|
"percent": f"{ram_percent:.1f}%" |
|
} |
|
except Exception as e: |
|
return { |
|
"total": "Unknown", |
|
"used": "Unknown", |
|
"percent": "Unknown" |
|
} |
|
|
|
|
|
def update_system_resources(): |
|
cpu_info = get_cpu_info() |
|
ram_info = get_ram_info() |
|
|
|
return { |
|
"cpu": cpu_info, |
|
"ram": ram_info |
|
} |
|
|
|
|
|
GPU_INFO = get_gpu_info() |
|
SYSTEM_INFO = update_system_resources() |
|
|
|
|
|
def update_gpu_info(): |
|
if DEVICE == "cuda": |
|
try: |
|
gpu_memory_allocated = torch.cuda.memory_allocated(0) / 1024**3 |
|
gpu_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3 |
|
return f"{gpu_memory_allocated:.1f}/{gpu_memory_total:.1f} GB" |
|
except: |
|
return "N/A" |
|
return "N/A" |
|
|
|
|
|
def hex_to_rgba(hex_color, alpha=1.0): |
|
hex_color = hex_color.lstrip('#') |
|
r = int(hex_color[0:2], 16) |
|
g = int(hex_color[2:4], 16) |
|
b = int(hex_color[4:6], 16) |
|
return f'rgba({r}, {g}, {b}, {alpha})' |
|
|
|
|
|
SUPPORTED_LANGUAGES = { |
|
'en': {'name': 'English', 'flag': '🇺🇸'}, |
|
'ru': {'name': 'Russian', 'flag': '🇷🇺'}, |
|
'tr': {'name': 'Turkish', 'flag': '🇹🇷'}, |
|
'es': {'name': 'Spanish', 'flag': '🇪🇸'}, |
|
'fr': {'name': 'French', 'flag': '🇫🇷'}, |
|
'it': {'name': 'Italian', 'flag': '🇮🇹'}, |
|
'pt': {'name': 'Portuguese', 'flag': '🇵🇹'} |
|
} |
|
|
|
|
|
LANGUAGE_EXAMPLES = { |
|
'en': { |
|
'toxic': [ |
|
"You are such an idiot, nobody likes your stupid content.", |
|
"Shut up you worthless piece of garbage. Everyone hates you.", |
|
"This is the most pathetic thing I've ever seen. Only losers would think this is good.", |
|
"Just kill yourself already, the world would be better without you." |
|
], |
|
'non_toxic': [ |
|
"I disagree with your opinion, but I appreciate your perspective.", |
|
"This content could use some improvement, but I see the effort you put into it.", |
|
"While I don't personally enjoy this type of content, others might find it valuable.", |
|
"Thank you for sharing your thoughts on this complex topic." |
|
] |
|
}, |
|
'ru': { |
|
'toxic': [ |
|
"Ты полный придурок, твой контент никому не нравится.", |
|
"Заткнись, бесполезный кусок мусора. Все тебя ненавидят.", |
|
"Это самая жалкая вещь, которую я когда-либо видел. Только неудачники думают, что это хорошо.", |
|
"Почему бы тебе просто не исчезнуть нахрен? Никто не будет скучать по тебе." |
|
], |
|
'non_toxic': [ |
|
"Я не согласен с вашим мнением, но уважаю вашу точку зрения.", |
|
"Этот контент можно улучшить, но я вижу, сколько усилий вы в него вложили.", |
|
"Хотя мне лично не нравится такой контент, другие могут найти его полезным.", |
|
"Спасибо, что поделились своими мыслями на эту сложную тему." |
|
] |
|
}, |
|
'tr': { |
|
'toxic': [ |
|
"Sen tam bir aptalsın, kimse senin aptalca içeriğini beğenmiyor.", |
|
"Kapa çeneni değersiz çöp parçası. Herkes senden nefret ediyor.", |
|
"Bu gördüğüm en acıklı şey. Sadece lanet olası kaybedenler bunun iyi olduğunu düşünür.", |
|
"Dünya sensiz daha iyi olurdu, kaybol git." |
|
], |
|
'non_toxic': [ |
|
"Fikrinize katılmıyorum ama bakış açınızı takdir ediyorum.", |
|
"Bu içerik biraz geliştirilebilir, ancak gösterdiğiniz çabayı görüyorum.", |
|
"Şahsen bu tür içerikten hoşlanmasam da, başkaları bunu değerli bulabilir.", |
|
"Bu karmaşık konu hakkındaki düşüncelerinizi paylaştığınız için teşekkür ederim." |
|
] |
|
}, |
|
'es': { |
|
'toxic': [ |
|
"Eres un completo idiota y nadie te quiere.", |
|
"Cállate, pedazo de basura inútil. Todos te odian.", |
|
"Esto es lo más patético que he visto nunca. Solo los perdedores pensarían que esto es bueno.", |
|
"El mundo estaría mejor sin ti, deberías desaparecer, joder." |
|
], |
|
'non_toxic': [ |
|
"No estoy de acuerdo con tu opinión, pero aprecio tu perspectiva.", |
|
"Este contenido podría mejorarse, pero veo el esfuerzo que has puesto en él.", |
|
"Aunque personalmente no disfruto este tipo de contenido, otros podrían encontrarlo valioso.", |
|
"Gracias por compartir tus pensamientos sobre este tema tan complejo." |
|
] |
|
}, |
|
'fr': { |
|
'toxic': [ |
|
"Tu es tellement stupide, personne n'aime ton contenu minable.", |
|
"Ferme-la, espèce de déchet inutile. Tout le monde te déteste.", |
|
"C'est la chose la plus pathétique que j'ai jamais vue. Seuls les loosers penseraient que c'est bien.", |
|
"Le monde serait meilleur sans toi, connard, va-t'en." |
|
], |
|
'non_toxic': [ |
|
"Je ne suis pas d'accord avec ton opinion, mais j'apprécie ta perspective.", |
|
"Ce contenu pourrait être amélioré, mais je vois l'effort que tu y as mis.", |
|
"Bien que personnellement je n'apprécie pas ce type de contenu, d'autres pourraient le trouver précieux.", |
|
"Merci d'avoir partagé tes réflexions sur ce sujet complexe." |
|
] |
|
}, |
|
'it': { |
|
'toxic': [ |
|
"Sei un tale idiota, a nessuno piace il tuo contenuto stupido.", |
|
"Chiudi quella bocca, pezzo di spazzatura inutile. Tutti ti odiano.", |
|
"Questa è la cosa più patetica che abbia mai visto. Solo i perdenti penserebbero che sia buona.", |
|
"Il mondo sarebbe migliore senza di te, sparisci." |
|
], |
|
'non_toxic': [ |
|
"Non sono d'accordo con la tua opinione, ma apprezzo la tua prospettiva.", |
|
"Questo contenuto potrebbe essere migliorato, ma vedo lo sforzo che ci hai messo.", |
|
"Anche se personalmente non apprezzo questo tipo di contenuto, altri potrebbero trovarlo utile.", |
|
"Grazie per aver condiviso i tuoi pensieri su questo argomento complesso." |
|
] |
|
}, |
|
'pt': { |
|
'toxic': [ |
|
"Você é um idiota completo, ninguém gosta do seu conteúdo estúpido.", |
|
"Cale a boca, seu pedaço de lixo inútil. Todos te odeiam.", |
|
"Isso é a coisa mais patética que eu já vi. Só perdedores pensariam que isso é bom.", |
|
"O mundo seria melhor sem você, desapareça." |
|
], |
|
'non_toxic': [ |
|
"Eu discordo da sua opinião, mas aprecio sua perspectiva.", |
|
"Este conteúdo poderia ser melhorado, mas vejo o esforço que você colocou nele.", |
|
"Embora eu pessoalmente não goste deste tipo de conteúdo, outros podem achá-lo valioso.", |
|
"Obrigado por compartilhar seus pensamentos sobre este tema complexo." |
|
] |
|
} |
|
} |
|
|
|
|
|
THEME = { |
|
"primary": "#2D3142", |
|
"background": "#FFFFFF", |
|
"surface": "#FFFFFF", |
|
"text": "#000000", |
|
"text_secondary": "#FFFFFF", |
|
"button": "#000000", |
|
"toxic": "#E53935", |
|
"non_toxic": "#2E7D32", |
|
"warning": "#F57C00", |
|
"info": "#1976D2", |
|
"sidebar_bg": "#FFFFFF", |
|
"card_bg": "white", |
|
"input_bg": "#F8F9FA" |
|
} |
|
|
|
|
|
st.markdown(f""" |
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Space+Grotesk:wght@300;400;500;600;700&display=swap'); |
|
|
|
:root, html, body, [class*="css"] {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
color: {THEME["text"]} !important; |
|
border: 1px solid {THEME["text"]} !important; |
|
overflow-y: scroll; |
|
overflow-x: hidden; |
|
}} |
|
|
|
svg, path{{ |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
/* Heading font styling */ |
|
h1, h2, h3, h4, h5, h6 {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
letter-spacing: -0.02em; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
.st-emotion{{ |
|
background-color: {THEME["background"]}; |
|
}} |
|
|
|
[data-testid="stMarkdownContainer"] h1, |
|
[data-testid="stMarkdownContainer"] h2, |
|
[data-testid="stMarkdownContainer"] h3 {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-weight: 600; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
/* Examples section styling */ |
|
.examples-section {{ |
|
margin-top: 15px; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
.example-button {{ |
|
text-align: left; |
|
overflow: hidden; |
|
text-overflow: ellipsis; |
|
white-space: nowrap; |
|
margin-bottom: 5px; |
|
transition: all 0.2s ease; |
|
background-color: {THEME["input_bg"]}; |
|
border-radius: 8px; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
.example-button:hover {{ |
|
transform: translateX(3px); |
|
background-color: {hex_to_rgba(THEME["primary"], 0.1)}; |
|
}} |
|
|
|
/* Style tab content */ |
|
.stTabs [data-baseweb="tab-panel"] {{ |
|
padding-top: 1rem; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
/* Tab content styling */ |
|
.stTabs [data-baseweb="tab"] {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-weight: 500; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
/* Style expandable sections */ |
|
div[data-testid="stExpander"] {{ |
|
margin-bottom: 10px !important; |
|
background-color: {THEME["card_bg"]}; |
|
border: 1px solid {hex_to_rgba(THEME["text"], 0.1)}; |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
div[data-testid="stExpander"] div[data-testid="stExpanderContent"] {{ |
|
max-height: 300px; |
|
overflow-y: auto; |
|
padding: 5px 10px; |
|
}} |
|
|
|
/* Hardware info styles */ |
|
.hardware-info {{ |
|
background-color: {hex_to_rgba(THEME["primary"], 0.05)}; |
|
border-radius: 10px; |
|
padding: 12px; |
|
margin: 8px 0; |
|
border-left: 3px solid {THEME["primary"]}; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
.hardware-title {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-weight: 600; |
|
font-size: 1.1rem; |
|
margin-bottom: 8px; |
|
display: flex; |
|
align-items: center; |
|
color: {THEME["primary"]}; |
|
}} |
|
|
|
/* Override Streamlit's default background */ |
|
.stApp {{ |
|
background-color: {THEME["background"]}; |
|
}} |
|
|
|
.st-emotion-cache-h4xjwg{{ |
|
background-color: {THEME["background"]}; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
/* Code editor and text areas */ |
|
.stTextInput>div>div>input, .stTextArea>div>div>textarea {{ |
|
background-color: {THEME["input_bg"]}; |
|
color: {THEME["text"]}; |
|
font-family: 'Space Grotesk', sans-serif; |
|
}} |
|
|
|
/* Sidebar styling */ |
|
section[data-testid="stSidebar"] {{ |
|
background-color: {THEME["sidebar_bg"]}; |
|
color: {THEME["text"]}; |
|
}} |
|
|
|
section[data-testid="stSidebar"] [data-testid="stMarkdown"] {{ |
|
color: {THEME["text"]}; |
|
background-color: {THEME["background"]}; |
|
}} |
|
|
|
section[data-testid="stSidebar"] .stSelectbox label, |
|
section[data-testid="stSidebar"] .stButton label {{ |
|
color: {THEME["text"]} !important; |
|
background-color: {THEME["background"]} !important; |
|
}} |
|
|
|
section[data-testid="stSidebar"] h3 {{ |
|
color: {THEME["text"]}; |
|
background-color: {THEME["background"]}; |
|
}} |
|
|
|
section[data-testid="stSidebar"] .main-title {{ |
|
color: {THEME["text"]}; |
|
-webkit-text-fill-color: {THEME["text"]}; |
|
background-color: {THEME["background"]}; |
|
}} |
|
|
|
section[data-testid="stSidebar"] h1 {{ |
|
color: {THEME["text"]}; |
|
background-color: {THEME["background"]}; |
|
}} |
|
|
|
.main-title {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 2.8rem; |
|
font-weight: 700; |
|
color: {THEME["text"]}; |
|
margin-bottom: 1rem; |
|
letter-spacing: -0.03em; |
|
}} |
|
|
|
.subtitle {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 1.2rem; |
|
font-weight: 400; |
|
color: {THEME["text"]}; |
|
margin-bottom: 2rem; |
|
}} |
|
|
|
.category-label {{ |
|
font-weight: 600; |
|
}} |
|
|
|
.toxic-category {{ |
|
padding: 3px 8px; |
|
border-radius: 12px; |
|
background-color: {hex_to_rgba(THEME["toxic"], 0.13)}; |
|
border: 1px solid {hex_to_rgba(THEME["toxic"], 0.31)}; |
|
margin-right: 5px; |
|
font-weight: 500; |
|
display: inline-block; |
|
margin-bottom: 5px; |
|
font-size: 0.9rem; |
|
color: {THEME["toxic"]}; |
|
transition: all 0.3s ease; |
|
}} |
|
|
|
.toxic-result {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 1.2rem; |
|
font-weight: 700; |
|
padding: 4px 12px; |
|
border-radius: 8px; |
|
display: inline-block; |
|
box-shadow: 0 2px 8px rgba(0,0,0,0.1); |
|
transition: all 0.3s ease; |
|
letter-spacing: -0.02em; |
|
}} |
|
|
|
.model-info {{ |
|
border-left: 3px solid {THEME["primary"]}; |
|
padding-left: 10px; |
|
transition: all 0.3s ease; |
|
}} |
|
|
|
.stButton button {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
border-radius: 8px; |
|
border: none; |
|
font-weight: 600; |
|
transition: all 0.3s ease; |
|
box-shadow: 0 2px 5px rgba(0,0,0,0.1); |
|
background-color: {THEME["button"]} !important; |
|
color: {THEME["text_secondary"]} !important; |
|
padding: 0.75rem 2rem; |
|
font-size: 1.1rem; |
|
letter-spacing: 0.02em; |
|
}} |
|
|
|
.stButton button:hover {{ |
|
transform: translateY(-2px); |
|
box-shadow: 0 4px 10px rgba(0,0,0,0.2); |
|
background-color: {hex_to_rgba(THEME["button"], 0.9)} !important; |
|
}} |
|
|
|
|
|
|
|
/* Cards for metrics at top */ |
|
div[data-testid="metric-container"] {{ |
|
background-color: {THEME["card_bg"]}; |
|
border-radius: 10px; |
|
padding: 15px; |
|
box-shadow: 0 2px 6px rgba(0,0,0,0.05); |
|
border: 1px solid {hex_to_rgba(THEME["text"], 0.1)}; |
|
}} |
|
|
|
/* Fix metric label colors - more specific selectors */ |
|
div[data-testid="metric-container"] > div:first-child {{ |
|
color: {THEME["text"]} !important; |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-weight: 500; |
|
}} |
|
|
|
div[data-testid="metric-container"] > div:first-child > label {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Target the specific label element */ |
|
div[data-testid="stMetricLabel"] {{ |
|
color: {THEME["text"]} !important; |
|
font-weight: 500 !important; |
|
}} |
|
|
|
div[data-testid="stMetricLabel"] > div {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Ensure metric value is also properly colored */ |
|
div[data-testid="stMetricValue"] {{ |
|
color: {THEME["text"]} !important; |
|
font-weight: 600 !important; |
|
}} |
|
|
|
/* Target all text within metric containers */ |
|
div[data-testid="metric-container"] * {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Additional specific targeting for metric labels */ |
|
[data-testid="metric-container-label"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
[data-testid="metric-container-label-value"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Force black color on metric labels */ |
|
div[data-testid="metric-container"] label, |
|
div[data-testid="metric-container"] div[role="button"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Remove default Streamlit menu and footer */ |
|
#MainMenu {{visibility: hidden;}} |
|
footer {{visibility: hidden;}} |
|
|
|
/* Style dataframe */ |
|
.stDataFrame {{ |
|
background-color: {THEME["card_bg"]}; |
|
}} |
|
|
|
.footer {{ |
|
text-align: center; |
|
opacity: 0.7; |
|
padding: 20px; |
|
transition: all 0.3s ease; |
|
color: {THEME["text"]}; |
|
font-family: 'Space Grotesk', sans-serif; |
|
}} |
|
|
|
.footer:hover {{ |
|
opacity: 1; |
|
}} |
|
|
|
/* Fix dropdown text color */ |
|
div[data-baseweb="select"] div[class*="valueContainer"] {{ |
|
color: {THEME["text_secondary"]} !important; |
|
}} |
|
|
|
div[data-baseweb="select"] div[class*="placeholder"] {{ |
|
color: {THEME["text_secondary"]} !important; |
|
}} |
|
|
|
div[data-baseweb="select"] div[class*="singleValue"] {{ |
|
color: {THEME["text_secondary"]} !important; |
|
}} |
|
|
|
/* Fix button text color */ |
|
.stButton > button {{ |
|
background-color: {THEME["button"]} !important; |
|
color: {THEME["text_secondary"]} !important; |
|
font-family: 'Space Grotesk', sans-serif !important; |
|
font-weight: 600 !important; |
|
font-size: 1.1rem !important; |
|
padding: 0.75rem 2rem !important; |
|
border: none !important; |
|
border-radius: 8px !important; |
|
transition: all 0.2s ease !important; |
|
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important; |
|
letter-spacing: 0.02em !important; |
|
}} |
|
|
|
.stButton > button:hover {{ |
|
transform: translateY(-2px) !important; |
|
box-shadow: 0 4px 10px rgba(0,0,0,0.2) !important; |
|
background-color: {hex_to_rgba(THEME["button"], 0.9)} !important; |
|
color: {THEME["text_secondary"]} !important; |
|
}} |
|
|
|
/* Fix dropdown styling */ |
|
div[data-baseweb="select"] {{ |
|
background-color: {THEME["button"]} !important; |
|
border-color: {hex_to_rgba(THEME["button"], 0.5)} !important; |
|
border-radius: 8px !important; |
|
}} |
|
|
|
/* Fix dropdown options */ |
|
div[data-baseweb="popover"] {{ |
|
background-color: {THEME["text"]} !important; |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
div[data-baseweb="popover"] div[role="option"] {{ |
|
color: {THEME["text_secondary"]} !important; |
|
}} |
|
|
|
div[data-baseweb="popover"] div[role="option"]:hover {{ |
|
background-color: {hex_to_rgba(THEME["button"], 0.7)} !important; |
|
}} |
|
|
|
/* Fix dropdown arrow color */ |
|
div[data-baseweb="select"] svg {{ |
|
color: {THEME["text_secondary"]} !important; |
|
}} |
|
|
|
/* Fix input label color */ |
|
.stTextArea label {{ |
|
color: {THEME["text"]} !important; |
|
font-weight: 500 !important; |
|
}} |
|
|
|
/* Fix selectbox label */ |
|
.stSelectbox label {{ |
|
color: {THEME["text"]} !important; |
|
font-weight: 500 !important; |
|
}} |
|
|
|
/* Ensure consistent black color */ |
|
.stButton > button {{ |
|
background-color: #000000 !important; |
|
}} |
|
|
|
div[data-baseweb="select"] {{ |
|
background-color: #000000 !important; |
|
}} |
|
|
|
div[data-baseweb="popover"] {{ |
|
background-color: #000000 !important; |
|
}} |
|
|
|
/* Style How to section */ |
|
.usage-step {{ |
|
background-color: {THEME["card_bg"]}; |
|
border: 1px solid {hex_to_rgba(THEME["text"], 0.1)}; |
|
border-radius: 10px; |
|
padding: 1rem; |
|
margin-bottom: 1rem; |
|
display: flex; |
|
align-items: center; |
|
transition: all 0.2s ease; |
|
}} |
|
|
|
.usage-step:hover {{ |
|
transform: translateX(5px); |
|
border-color: {hex_to_rgba(THEME["button"], 0.3)}; |
|
box-shadow: 0 2px 8px rgba(0,0,0,0.05); |
|
}} |
|
|
|
.step-number {{ |
|
background-color: {THEME["button"]}; |
|
color: {THEME["text_secondary"]}; |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 1rem; |
|
font-weight: 600; |
|
min-width: 2.5rem; |
|
height: 2.5rem; |
|
border-radius: 30%; |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
margin-right: 1.2rem; |
|
}} |
|
|
|
.usage-step div:last-child {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 1rem; |
|
color: {THEME["text"]}; |
|
flex: 1; |
|
line-height: 1.4; |
|
}} |
|
|
|
/* Style the How to section header */ |
|
[data-testid="stHeader"] {{ |
|
background-color: transparent !important; |
|
}} |
|
|
|
.colored-header {{ |
|
margin: 2rem 0 1.5rem 0; |
|
}} |
|
|
|
.colored-header h1 {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 2rem; |
|
font-weight: 700; |
|
color: {THEME["text"]}; |
|
margin-bottom: 0.5rem; |
|
}} |
|
|
|
.colored-header p {{ |
|
font-family: 'Space Grotesk', sans-serif; |
|
font-size: 1.1rem; |
|
color: {hex_to_rgba(THEME["text"], 0.8)}; |
|
}} |
|
|
|
/* Fix plotly chart axis labels */ |
|
.js-plotly-plot .plotly .g-gtitle {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
.js-plotly-plot .plotly .xtitle, |
|
.js-plotly-plot .plotly .ytitle {{ |
|
fill: {THEME["text"]} !important; |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
.js-plotly-plot .plotly .xtick text, |
|
.js-plotly-plot .plotly .ytick text {{ |
|
fill: {THEME["text"]} !important; |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Fix tab text color */ |
|
button[data-baseweb="tab"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
button[data-baseweb="tab"][aria-selected="true"] {{ |
|
color: {THEME["primary"]} !important; |
|
}} |
|
|
|
/* Fix expander arrow color */ |
|
div[data-testid="stExpander"] svg {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Ensure plotly modebar buttons are visible */ |
|
.modebar-btn path {{ |
|
fill: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Fix any remaining white text on white background issues */ |
|
.element-container, .stMarkdown, .stText {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Ensure text inputs have black text */ |
|
.stTextInput input, .stTextArea textarea {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Fix plotly legend text */ |
|
.js-plotly-plot .plotly .legend text {{ |
|
fill: {THEME["text"]} !important; |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Fix success message color */ |
|
.stSuccess {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Fix success icon color */ |
|
.stSuccess svg {{ |
|
fill: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Ensure all alert messages have proper text color */ |
|
div[data-baseweb="notification"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Fix input area text color */ |
|
textarea {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(f""" |
|
<style> |
|
/* Direct targeting of metric labels */ |
|
[data-testid="stMetricLabel"] {{ |
|
color: {THEME["text"]} !important; |
|
font-weight: 500 !important; |
|
}} |
|
|
|
[data-testid="stMetricLabel"] span {{ |
|
color: {THEME["text"]} !important; |
|
font-weight: 500 !important; |
|
}} |
|
|
|
/* Target the label content directly */ |
|
[data-testid="stMetricLabel"] div {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Target every element inside a metric label */ |
|
[data-testid="stMetricLabel"] * {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Style the value too */ |
|
[data-testid="stMetricValue"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Extremely specific selector to ensure it overrides everything */ |
|
div[data-testid="metric-container"] div[data-testid="stMetricLabel"] {{ |
|
color: {THEME["text"]} !important; |
|
}} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
@st.cache_resource |
|
def load_classifier(): |
|
try: |
|
if os.path.exists(ONNX_MODEL_PATH): |
|
classifier = OptimizedToxicityClassifier(onnx_path=ONNX_MODEL_PATH, device=DEVICE) |
|
st.session_state['model_type'] = 'Loaded' |
|
return classifier |
|
elif os.path.exists(PYTORCH_MODEL_DIR): |
|
classifier = OptimizedToxicityClassifier(pytorch_path=PYTORCH_MODEL_DIR, device=DEVICE) |
|
st.session_state['model_type'] = 'Loaded' |
|
return classifier |
|
else: |
|
st.error(f"❌ No model found at {ONNX_MODEL_PATH} or {PYTORCH_MODEL_DIR}") |
|
return None |
|
except Exception as e: |
|
st.error(f"Error loading model: {str(e)}") |
|
import traceback |
|
st.error(traceback.format_exc()) |
|
return None |
|
|
|
def detect_language(text: str) -> str: |
|
"""Detect language of input text""" |
|
try: |
|
lang, _ = langid.classify(text) |
|
return lang if lang in SUPPORTED_LANGUAGES else 'en' |
|
except: |
|
return 'en' |
|
|
|
def predict_toxicity(text: str, selected_language: str = "Auto-detect") -> Dict: |
|
"""Predict toxicity of input text""" |
|
if not text or not text.strip(): |
|
return { |
|
"error": "Please enter some text to analyze.", |
|
"results": None |
|
} |
|
|
|
if not st.session_state.get('model_loaded', False): |
|
return { |
|
"error": "Model not loaded. Please check logs.", |
|
"results": None |
|
} |
|
|
|
|
|
with st.spinner("Analyzing text..."): |
|
|
|
start_time = time.time() |
|
|
|
|
|
if selected_language == "Auto-detect": |
|
lang_detection_start = time.time() |
|
lang_code = detect_language(text) |
|
lang_detection_time = time.time() - lang_detection_start |
|
detected = True |
|
else: |
|
|
|
selected_name = selected_language.split(' ')[1] if len(selected_language.split(' ')) > 1 else selected_language |
|
lang_code = next((code for code, info in SUPPORTED_LANGUAGES.items() |
|
if info['name'] == selected_name), 'en') |
|
lang_detection_time = 0 |
|
detected = False |
|
|
|
|
|
try: |
|
model_inference_start = time.time() |
|
results = classifier.predict([text], langs=[lang_code])[0] |
|
model_inference_time = time.time() - model_inference_start |
|
total_time = time.time() - start_time |
|
|
|
return { |
|
"results": results, |
|
"detected": detected, |
|
"lang_code": lang_code, |
|
"performance": { |
|
"total_time": total_time, |
|
"lang_detection_time": lang_detection_time, |
|
"model_inference_time": model_inference_time |
|
} |
|
} |
|
except Exception as e: |
|
import traceback |
|
traceback.print_exc() |
|
return { |
|
"error": f"Error processing text: {str(e)}", |
|
"results": None |
|
} |
|
|
|
|
|
def set_example(lang_code, example_type, example_index=0): |
|
st.session_state['use_example'] = True |
|
|
|
example = LANGUAGE_EXAMPLES[lang_code][example_type][example_index] |
|
st.session_state['example_text'] = example |
|
st.session_state['detected_lang'] = lang_code |
|
st.session_state['example_info'] = { |
|
'type': example_type, |
|
'lang': lang_code, |
|
'index': example_index |
|
} |
|
|
|
|
|
if 'use_example' not in st.session_state: |
|
st.session_state['use_example'] = False |
|
st.session_state['example_text'] = "" |
|
st.session_state['detected_lang'] = "Auto-detect" |
|
st.session_state['example_info'] = None |
|
|
|
|
|
with st.sidebar: |
|
st.markdown("<h1 class='main-title'>Multilingual Toxicity Analyzer</h1>", unsafe_allow_html=True) |
|
|
|
st.markdown(""" |
|
#### This app analyzes text for different types of toxicity across multiple languages with high accuracy. |
|
""") |
|
|
|
|
|
st.markdown("#### Supported Languages:") |
|
lang_cols = st.columns(2) |
|
|
|
for i, (code, info) in enumerate(SUPPORTED_LANGUAGES.items()): |
|
col_idx = i % 2 |
|
with lang_cols[col_idx]: |
|
st.markdown(f"<div class='language-option'><span class='language-flag'>{info['flag']}</span> {info['name']}</div>", |
|
unsafe_allow_html=True) |
|
|
|
st.divider() |
|
|
|
|
|
st.markdown("### 🌐 Select Language") |
|
language_options = ["Auto-detect"] + [f"{info['flag']} {info['name']}" for code, info in SUPPORTED_LANGUAGES.items()] |
|
selected_language = st.selectbox( |
|
"Choose language or use auto-detect", |
|
language_options, |
|
index=0, |
|
key="selected_language", |
|
help="Choose a specific language or use auto-detection" |
|
) |
|
|
|
|
|
st.markdown("### 📝 Try with examples:") |
|
|
|
|
|
example_tabs = st.tabs(["Toxic Examples", "Non-Toxic Examples"]) |
|
|
|
|
|
ordered_langs = ['en', 'es', 'fr', 'pt', 'it', 'ru', 'tr'] |
|
|
|
|
|
with example_tabs[0]: |
|
st.markdown('<div class="examples-section">', unsafe_allow_html=True) |
|
for lang_code in ordered_langs: |
|
info = SUPPORTED_LANGUAGES[lang_code] |
|
with st.expander(f"{info['flag']} {info['name']} examples"): |
|
for i, example in enumerate(LANGUAGE_EXAMPLES[lang_code]['toxic']): |
|
|
|
preview = example[:40] + "..." if len(example) > 40 else example |
|
button_key = f"toxic_{lang_code}_{i}" |
|
button_help = f"Try with this {info['name']} toxic example" |
|
|
|
|
|
if st.button(f"Example {i+1}: {preview}", |
|
key=button_key, |
|
use_container_width=True, |
|
help=button_help): |
|
set_example(lang_code, 'toxic', i) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
|
|
with example_tabs[1]: |
|
st.markdown('<div class="examples-section">', unsafe_allow_html=True) |
|
for lang_code in ordered_langs: |
|
info = SUPPORTED_LANGUAGES[lang_code] |
|
with st.expander(f"{info['flag']} {info['name']} examples"): |
|
for i, example in enumerate(LANGUAGE_EXAMPLES[lang_code]['non_toxic']): |
|
|
|
preview = example[:40] + "..." if len(example) > 40 else example |
|
button_key = f"non_toxic_{lang_code}_{i}" |
|
button_help = f"Try with this {info['name']} non-toxic example" |
|
|
|
if st.button(f"Example {i+1}: {preview}", |
|
key=button_key, |
|
use_container_width=True, |
|
help=button_help): |
|
set_example(lang_code, 'non_toxic', i) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
st.divider() |
|
|
|
|
|
st.markdown("### 💻 System Information", unsafe_allow_html=True) |
|
|
|
|
|
current_sys_info = update_system_resources() |
|
|
|
|
|
if DEVICE == "cuda": |
|
st.markdown(""" |
|
<div class="hardware-info"> |
|
<div class="hardware-title"><span class="icon">🎮</span> GPU</div> |
|
<div class="hardware-resource"> |
|
""", unsafe_allow_html=True) |
|
|
|
gpu_name = GPU_INFO.split(" (")[0] |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Model:</span> <span class='value'>{gpu_name}</span></div>", unsafe_allow_html=True) |
|
|
|
cuda_version = "Unknown" |
|
if "CUDA" in GPU_INFO: |
|
cuda_version = GPU_INFO.split("CUDA ")[1].split(",")[0] |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>CUDA:</span> <span class='value'>{cuda_version}</span></div>", unsafe_allow_html=True) |
|
|
|
current_gpu_memory = update_gpu_info() |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Memory:</span> <span class='value'>{current_gpu_memory}</span></div>", unsafe_allow_html=True) |
|
|
|
st.markdown("</div></div>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
<div class="hardware-info"> |
|
<div class="hardware-title"><span class="icon">⚙️</span> CPU</div> |
|
<div class="hardware-resource"> |
|
""", unsafe_allow_html=True) |
|
|
|
cpu_info = current_sys_info["cpu"] |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Model:</span> <span class='value'>{cpu_info['name']}</span></div>", unsafe_allow_html=True) |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Cores:</span> <span class='value'>{cpu_info['cores']}</span></div>", unsafe_allow_html=True) |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Frequency:</span> <span class='value'>{cpu_info['freq']}</span></div>", unsafe_allow_html=True) |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Usage:</span> <span class='value'>{cpu_info['usage']}</span></div>", unsafe_allow_html=True) |
|
|
|
st.markdown("</div></div>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
<div class="hardware-info"> |
|
<div class="hardware-title"><span class="icon">🧠</span> RAM</div> |
|
<div class="hardware-resource"> |
|
""", unsafe_allow_html=True) |
|
|
|
ram_info = current_sys_info["ram"] |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Total:</span> <span class='value'>{ram_info['total']}</span></div>", unsafe_allow_html=True) |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Used:</span> <span class='value'>{ram_info['used']}</span></div>", unsafe_allow_html=True) |
|
st.markdown(f"<div class='hardware-stat'><span class='label'>Usage:</span> <span class='value'>{ram_info['percent']}</span></div>", unsafe_allow_html=True) |
|
|
|
st.markdown("</div></div>", unsafe_allow_html=True) |
|
|
|
st.divider() |
|
|
|
|
|
st.markdown("### ⚙️ Toxicity Thresholds") |
|
st.markdown(""" |
|
<div class='threshold-bg'> |
|
The model uses language-specific thresholds to determine if a text is toxic: |
|
|
|
- **Toxic**: 60% |
|
- **Severe Toxic**: 54% |
|
- **Obscene**: 60% |
|
- **Threat**: 48% |
|
- **Insult**: 60% |
|
- **Identity Hate**: 50% |
|
|
|
These increased thresholds reduce false positives but may miss borderline toxic content. |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if 'model_loaded' not in st.session_state: |
|
with st.spinner("🔄 Loading model..."): |
|
classifier = load_classifier() |
|
if classifier: |
|
st.session_state['model_loaded'] = True |
|
st.success(f"✅ Model loaded successfully on {GPU_INFO}") |
|
else: |
|
st.session_state['model_loaded'] = False |
|
st.error("❌ Failed to load model. Please check logs.") |
|
else: |
|
|
|
classifier = load_classifier() |
|
|
|
|
|
st.markdown(""" |
|
<h1 class='main-title'> |
|
<svg xmlns="http://www.w3.org/2000/svg" style="padding-bottom: 10px;" width="45" height="45" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-shield-plus-icon lucide-shield-plus"> |
|
<path d="M20 13c0 5-3.5 7.5-7.66 8.95a1 1 0 0 1-.67-.01C7.5 20.5 4 18 4 13V6a1 1 0 0 1 1-1c2 0 4.5-1.2 6.24-2.72a1.17 1.17 0 0 1 1.52 0C14.51 3.81 17 5 19 5a1 1 0 0 1 1 1z"/> |
|
<path d="M9 12h6"/> |
|
<path d="M12 9v6"/> |
|
</svg> |
|
Multilingual Toxicity Analyzer |
|
</h1> |
|
""", unsafe_allow_html=True) |
|
st.markdown(""" |
|
<p class='subtitle'>Detect toxic content in multiple languages with state-of-the-art accuracy</p> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with stylable_container( |
|
key="text_input_container", |
|
css_styles=f""" |
|
{{ |
|
border-radius: 10px; |
|
overflow: hidden; |
|
transition: all 0.3s ease; |
|
box-shadow: 0 2px 8px rgba(0,0,0,0.15); |
|
background-color: {THEME["card_bg"]}; |
|
padding: 10px; |
|
margin-bottom: 15px; |
|
}} |
|
|
|
textarea {{ |
|
caret-color: black !important; |
|
color: {THEME["text"]} !important; |
|
}} |
|
|
|
/* Ensure the text input cursor is visible */ |
|
.stTextArea textarea {{ |
|
caret-color: black !important; |
|
}} |
|
""" |
|
): |
|
|
|
current_example = st.session_state.get('example_text', '') |
|
|
|
|
|
text_input = st.text_area( |
|
"Enter text to analyze", |
|
height=80, |
|
value=current_example if st.session_state.get('use_example', False) else st.session_state.get('text_input', ''), |
|
key="text_input", |
|
help="Enter text in any supported language to analyze for toxicity" |
|
) |
|
|
|
|
|
if st.session_state.get('use_example', False) and text_input != current_example: |
|
|
|
st.session_state['use_example'] = False |
|
st.session_state['example_text'] = "" |
|
st.session_state['example_info'] = None |
|
|
|
|
|
col1, col2, col3 = st.columns([1, 2, 1]) |
|
with col2: |
|
analyze_button = st.button( |
|
"Analyze Text", |
|
type="primary", |
|
use_container_width=True, |
|
help="Click to analyze the entered text for toxicity" |
|
) |
|
|
|
|
|
if analyze_button or (text_input and 'last_analyzed' not in st.session_state or st.session_state.get('last_analyzed') != text_input): |
|
if text_input: |
|
st.session_state['last_analyzed'] = text_input |
|
|
|
|
|
pre_prediction_resources = update_system_resources() |
|
|
|
|
|
prediction = predict_toxicity(text_input, selected_language) |
|
|
|
|
|
post_prediction_resources = update_system_resources() |
|
|
|
|
|
resource_delta = { |
|
"cpu_usage": float(post_prediction_resources["cpu"]["usage"].rstrip("%")) - float(pre_prediction_resources["cpu"]["usage"].rstrip("%")), |
|
"ram_usage": float(post_prediction_resources["ram"]["percent"].rstrip("%")) - float(pre_prediction_resources["ram"]["percent"].rstrip("%")) |
|
} |
|
|
|
|
|
if DEVICE == "cuda": |
|
new_memory_info = update_gpu_info() |
|
|
|
|
|
|
|
|
|
|
|
st.session_state['is_analysis_complete'] = True |
|
st.session_state['analysis_has_error'] = "error" in prediction and prediction["error"] |
|
|
|
if "error" in prediction and prediction["error"]: |
|
st.error(prediction["error"]) |
|
elif prediction["results"]: |
|
|
|
|
|
|
|
results = prediction["results"] |
|
performance = prediction.get("performance", {}) |
|
|
|
|
|
is_toxic = results["is_toxic"] |
|
result_color = THEME["toxic"] if is_toxic else THEME["non_toxic"] |
|
result_text = "TOXIC" if is_toxic else "NON-TOXIC" |
|
|
|
|
|
lang_code = prediction["lang_code"] |
|
lang_info = SUPPORTED_LANGUAGES.get(lang_code, {"name": lang_code, "flag": "🌐"}) |
|
|
|
|
|
toxic_count = len(results["toxic_categories"]) if is_toxic else 0 |
|
|
|
|
|
categories = [] |
|
probabilities = [] |
|
statuses = [] |
|
|
|
|
|
category_thresholds = { |
|
'toxic': 0.60, |
|
'severe_toxic': 0.54, |
|
'obscene': 0.60, |
|
'threat': 0.48, |
|
'insult': 0.60, |
|
'identity_hate': 0.50 |
|
} |
|
|
|
for label, prob in results["probabilities"].items(): |
|
categories.append(label.replace('_', ' ').title()) |
|
probabilities.append(round(prob * 100, 1)) |
|
threshold = category_thresholds.get(label, 0.5) * 100 |
|
statuses.append("DETECTED" if prob * 100 >= threshold else "Not Detected") |
|
|
|
|
|
chart_data = sorted(zip(categories, probabilities, statuses), key=lambda x: x[1], reverse=True) |
|
chart_cats, chart_probs, chart_statuses = zip(*chart_data) |
|
|
|
|
|
col1, col2 = st.columns([3, 2]) |
|
|
|
with col1: |
|
|
|
with stylable_container( |
|
key="result_card", |
|
css_styles=f""" |
|
{{ |
|
border-radius: 10px; |
|
padding: 10px 15px; |
|
background-color: {THEME["card_bg"]}; |
|
border-left: 5px solid {result_color}; |
|
margin-bottom: 10px; |
|
box-shadow: 0 4px 12px rgba(0,0,0,0.1); |
|
overflow: hidden; |
|
}} |
|
""" |
|
): |
|
|
|
st.markdown(f""" |
|
<div style="display: flex; align-items: center; margin-bottom: 5px;"> |
|
<h3 style="margin: 0; margin-right: 10px;">Analysis Result:</h3> |
|
<span style='background-color: {hex_to_rgba(result_color, 0.13)}; color: {result_color}; font-family: "Space Grotesk", sans-serif; font-size: 1.1rem; font-weight: 700; padding: 2px 10px; border-radius: 6px;'>{result_text}</span> |
|
</div> |
|
<div style="margin: 5px 0; font-size: 0.95rem;"> |
|
<b>Language:</b> {lang_info['flag']} {lang_info['name']} {'(detected)' if prediction["detected"] else ''} |
|
</div> |
|
<div style="margin: 5px 0 12px 0; font-size: 0.95rem;"> |
|
<b>Toxic Categories:</b> {", ".join([f'<span class="toxic-category" style="padding: 2px 6px; font-size: 0.8rem; display: inline-block;">{category.replace("_", " ").title()}</span>' for category in results["toxic_categories"]]) if is_toxic and toxic_count > 0 else '<span style="color: #666; font-size: 0.9rem;">None</span>'} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("<h4 style='overflow: hidden; margin-top: 4px; margin-bottom: 4px;'>Toxicity Probabilities:</h4>", unsafe_allow_html=True) |
|
|
|
|
|
fig = go.Figure() |
|
|
|
|
|
for i, (cat, prob, status) in enumerate(zip(chart_cats, chart_probs, chart_statuses)): |
|
color = THEME["toxic"] if status == "DETECTED" else THEME["non_toxic"] |
|
border_color = hex_to_rgba(color, 0.85) |
|
|
|
fig.add_trace(go.Bar( |
|
y=[cat], |
|
x=[prob], |
|
orientation='h', |
|
name=cat, |
|
marker=dict( |
|
color=color, |
|
line=dict( |
|
color=border_color, |
|
width=2 |
|
) |
|
), |
|
text=[f"{prob}%"], |
|
textposition='outside', |
|
textfont=dict(size=16, weight='bold'), |
|
hoverinfo='text', |
|
hovertext=[f"{cat}: {prob}%"] |
|
)) |
|
|
|
|
|
fig.update_layout( |
|
title=None, |
|
xaxis_title="Probability (%)", |
|
yaxis_title=None, |
|
height=340, |
|
margin=dict(l=10, r=40, t=20, b=40), |
|
xaxis=dict( |
|
range=[0, 115], |
|
gridcolor=hex_to_rgba(THEME["text"], 0.15), |
|
zerolinecolor=hex_to_rgba(THEME["text"], 0.3), |
|
color=THEME["text"], |
|
tickfont=dict(size=15), |
|
title_font=dict(size=16, family="Space Grotesk, sans-serif") |
|
), |
|
yaxis=dict( |
|
gridcolor=hex_to_rgba(THEME["text"], 0.15), |
|
color=THEME["text"], |
|
tickfont=dict(size=15, family="Space Grotesk, sans-serif", weight='bold'), |
|
automargin=True |
|
), |
|
bargap=0.3, |
|
paper_bgcolor='rgba(0,0,0,0)', |
|
plot_bgcolor='rgba(0,0,0,0)', |
|
font=dict( |
|
family="Space Grotesk, sans-serif", |
|
color=THEME["text"], |
|
size=15 |
|
), |
|
showlegend=False |
|
) |
|
|
|
|
|
fig.update_xaxes( |
|
showgrid=True, |
|
gridwidth=1.5, |
|
gridcolor=hex_to_rgba(THEME["text"], 0.15), |
|
dtick=20 |
|
) |
|
|
|
|
|
st.plotly_chart(fig, use_container_width=True, config={ |
|
'displayModeBar': False, |
|
'displaylogo': False |
|
}) |
|
|
|
with col2: |
|
|
|
if performance: |
|
with stylable_container( |
|
key="performance_metrics_card", |
|
css_styles=f""" |
|
{{ |
|
border-radius: 10px; |
|
padding: 20px; |
|
background-color: {THEME["card_bg"]}; |
|
border-left: 3px solid {THEME["primary"]}; |
|
height: 100%; |
|
box-shadow: 0 4px 12px rgba(0,0,0,0.1); |
|
}} |
|
""" |
|
): |
|
st.markdown("<h3 style='margin-top: 0;'>Performance Metrics</h3>", unsafe_allow_html=True) |
|
total_time = performance.get("total_time", 0) |
|
inference_time = performance.get("model_inference_time", 0) |
|
lang_detection_time = performance.get("lang_detection_time", 0) |
|
|
|
|
|
perf_tab1, perf_tab2 = st.tabs(["Time Metrics", "Resource Usage"]) |
|
|
|
with perf_tab1: |
|
time_cols = st.columns(1) |
|
with time_cols[0]: |
|
|
|
total_time_val = f"{total_time:.3f}s" |
|
inference_time_val = f"{inference_time:.3f}s" |
|
lang_detection_time_val = f"{lang_detection_time:.3f}s" |
|
|
|
st.markdown(f""" |
|
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);"> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;"> |
|
Total Time |
|
</div> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;"> |
|
{total_time_val} |
|
</div> |
|
</div> |
|
|
|
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);"> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;"> |
|
Model Inference |
|
</div> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;"> |
|
{inference_time_val} |
|
</div> |
|
</div> |
|
|
|
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);"> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;"> |
|
Language Detection |
|
</div> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;"> |
|
{lang_detection_time_val} |
|
</div> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
with perf_tab2: |
|
|
|
current_sys_info = update_system_resources() |
|
|
|
|
|
cpu_usage = current_sys_info["cpu"]["usage"] |
|
cpu_delta = f"{resource_delta['cpu_usage']:+.1f}%" if abs(resource_delta['cpu_usage']) > 0.1 else None |
|
cpu_delta_display = f" ({cpu_delta})" if cpu_delta else "" |
|
|
|
ram_usage = current_sys_info["ram"]["percent"] |
|
ram_delta = f"{resource_delta['ram_usage']:+.1f}%" if abs(resource_delta['ram_usage']) > 0.1 else None |
|
ram_delta_display = f" ({ram_delta})" if ram_delta else "" |
|
|
|
if DEVICE == "cuda": |
|
gpu_memory = update_gpu_info() |
|
memory_display = f"GPU Memory: {gpu_memory}" |
|
else: |
|
memory_display = f"System RAM: {current_sys_info['ram']['used']} / {current_sys_info['ram']['total']}" |
|
|
|
st.markdown(f""" |
|
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);"> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;"> |
|
CPU Usage |
|
</div> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;"> |
|
{cpu_usage}<span style="font-size: 0.9rem; color: {THEME["primary"]};">{cpu_delta_display}</span> |
|
</div> |
|
</div> |
|
|
|
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);"> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;"> |
|
RAM Usage |
|
</div> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;"> |
|
{ram_usage}<span style="font-size: 0.9rem; color: {THEME["primary"]};">{ram_delta_display}</span> |
|
</div> |
|
</div> |
|
|
|
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);"> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;"> |
|
Memory |
|
</div> |
|
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;"> |
|
{memory_display} |
|
</div> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
else: |
|
pass |
|
|
|
|
|
st.divider() |
|
colored_header( |
|
label="How to use this AI Model", |
|
description="Follow these steps to analyze text for toxicity", |
|
color_name="blue-70" |
|
) |
|
|
|
|
|
st.markdown(""" |
|
<div class='usage-step'> |
|
<div class='step-number'>1</div> |
|
<div>Enter text in the input box above. You can type directly or paste from another source.</div> |
|
</div> |
|
|
|
<div class='usage-step'> |
|
<div class='step-number'>2</div> |
|
<div>Select a specific language from the sidebar or use the auto-detect feature if you're unsure.</div> |
|
</div> |
|
|
|
<div class='usage-step'> |
|
<div class='step-number'>3</div> |
|
<div>Click "Analyze Text" to get detailed toxicity analysis results.</div> |
|
</div> |
|
|
|
<div class='usage-step'> |
|
<div class='step-number'>4</div> |
|
<div>Examine the breakdown of toxicity categories, probabilities, and visualization.</div> |
|
</div> |
|
|
|
<div class='usage-step'> |
|
<div class='step-number'>5</div> |
|
<div>Try different examples from the sidebar to see how the model performs with various languages.</div> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
<div class='footer'> |
|
<div>Powered by XLM-RoBERTa | Streamlit UI</div> |
|
<div style='font-size: 0.9rem; margin-top: 5px;'>Made with ❤️ by Deeptanshu, Nauman, Sara and Soham</div> |
|
</div> |
|
""", unsafe_allow_html=True) |