File size: 7,162 Bytes
b832029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from spacy.pipeline.ner import EntityRecognizer
from spacy.language import Language
from thinc.api import Config
from sklearn.metrics import f1_score, precision_recall_fscore_support
import plotly.express as px
import plotly.graph_objects as go
import time
import json
import os
from pathlib import Path


default_model_config = """

[model]

@architectures = "spacy.TransitionBasedParser.v2"

state_type = "ner"

extra_state_tokens = false

hidden_width = 64

maxout_pieces = 2

use_upper = false

nO = null



[model.tok2vec]

@architectures = "spacy-transformers.TransformerListener.v1"

grad_factor = 1.0

pooling = {"@layers":"reduce_mean.v1"}

upstream = "*"

"""
DEFAULT_MODEL = Config().from_str(default_model_config)["model"]


@Language.factory("ner_all_metrics",

    default_config={

        "model": DEFAULT_MODEL,

        "moves": None,

        "scorer": {"@scorers": "spacy.ner_scorer.v1"},

        "incorrect_spans_key": None,

        "update_with_oracle_cut_size": 100,

        "eval_frequency": 100,

    },

    default_score_weights={

        "f1_micro": 1.0,

        "f1_macro": 1.0,

        "f1_weighted": 1.0,

        "f1_COMPONENT": 1.0,

        "f1_SYSTEM": 1.0,

        "f1_ATTRIBUTE": 1.0,

        "ents_p": 0.0,

        "ents_r": 0.0,

    })
def create_ner_all_metrics(

    nlp, name, 

    model, moves, 

    scorer, incorrect_spans_key, 

    update_with_oracle_cut_size, eval_frequency

):
    return NERWithAllMetrics(
        nlp.vocab, model, 
        name=name, moves=moves, 
        scorer=scorer, incorrect_spans_key=incorrect_spans_key,
        update_with_oracle_cut_size=update_with_oracle_cut_size, eval_frequency=eval_frequency
    )


class NERWithAllMetrics(EntityRecognizer):
    
    def __init__(self, *args, eval_frequency=100, **kwargs):
        super().__init__(*args, **kwargs)
        self.metric_history = []
        self.max_f1 = 0
        self.max_f1_step = 0
        self.eval_frequency = eval_frequency
        self.start_learning_time = None
        
    def score(self, examples, **kwargs):
        scores = super().score(examples, **kwargs)
        scores = dict(list(scores.items()) + list(self.custom_scorer(examples).items()))
        tmp_scores = scores.copy()
        tmp_scores["step"] = len(self.metric_history) * self.eval_frequency
        if tmp_scores["f1_macro"] > self.max_f1:
            self.max_f1 = tmp_scores["f1_macro"]
            self.max_f1_step = tmp_scores["step"]
        self.metric_history.append(tmp_scores)
        return scores

    def custom_scorer(self, examples):
      y_true = []
      y_pred = []
      for example in examples:
          gold = {(ent.start_char, ent.end_char, ent.label_) for ent in example.reference.ents}
          pred = {(ent.start_char, ent.end_char, ent.label_) for ent in example.predicted.ents}
          all_spans = gold | pred
          for span in all_spans:
              if span in gold and span in pred:
                  y_true.append(span[2])
                  y_pred.append(span[2])
              elif span in gold:
                  y_true.append(span[2])
                  y_pred.append("O")
              elif span in pred:
                  y_true.append("O")
                  y_pred.append(span[2])

      labels = sorted({label for label in y_true if label != "O"})

      precision, recall, f1, support = precision_recall_fscore_support(
          y_true, y_pred, labels=labels, zero_division=0, average=None
      )
      result = {}
      for l, p, r, f in zip(labels, precision, recall, f1):
          result[f"f1_{l}"] = f

      result["f1_micro"] = f1_score(y_true, y_pred, average="micro", labels=labels, zero_division=0)
      result["f1_macro"] = f1_score(y_true, y_pred, average="macro", labels=labels, zero_division=0)
      result["f1_weighted"] = f1_score(y_true, y_pred, average="weighted", labels=labels, zero_division=0)

      return result

    def preprocess_metric_history(self):
        result = {
            "metric_name": [],
            "metric_value": [],
            "step": []
        }
        for cur_metrics in self.metric_history:
            cur_step = cur_metrics["step"]
            for key, value in cur_metrics.items():
                if key != "step" and isinstance(value, float):
                    result["metric_name"].append(key)
                    result["metric_value"].append(value)
                    result["step"].append(cur_step)
        return result

    def save_metrics_history(self, path):
        if self.start_learning_time is None:
            self.start_learning_time = time.monotonic()

        if self.metric_history:

            metrics_history_to_save = self.preprocess_metric_history()
            fig = px.line(metrics_history_to_save, x="step", y="metric_value", color="metric_name")
            for trace in fig.data:
                if trace.name in ["f1_micro", "f1_macro", "f1_weighted"]:
                    trace.line.width = 6
                else:
                    trace.line.width = 1

                idx = list(trace.x).index(self.max_f1_step)
                highlight_y = list(trace.y)[idx]
                line_color = trace.line.color
                line_name = trace.name
                fig.add_trace(go.Scatter(
                    x=[self.max_f1_step], y=[highlight_y],
                    mode='markers+text',
                    marker=dict(
                        color=line_color, size=10),
                        text=[f"{round(highlight_y, 2)}"],
                        textposition="top center",
                        name=f"{line_name} best"
                    ))

            current_time = time.monotonic()
            current_time_of_training = current_time - self.start_learning_time
            current_time_of_training_text = f"{int(current_time_of_training // 3600)} hrs {int(current_time_of_training % 3600) // 60} min {round(current_time_of_training % 60)} sec"

            fig.update_layout(title = dict(
                text="Training statistics",
                subtitle=dict(
                    text=f"Training time amounted to {current_time_of_training_text}",
                    font=dict(color="gray", size=13),
                )
            ))

            output_dir = os.path.join(str(path), "logs")
            os.makedirs(output_dir, exist_ok=True)
            fig_path = os.path.join(output_dir, "training_metrics.html")
            json_path = os.path.join(output_dir, "training_metrics.json")
            fig.write_html(fig_path)
            with open(json_path, "w", encoding="utf-8") as f:
                json.dump({
                    "data": metrics_history_to_save,
                    "train_time_s": current_time_of_training
                }, f, indent=2, ensure_ascii=False)

    def to_disk(self, path, *args, **kwargs):
        super().to_disk(path, *args, **kwargs)
        output_dir = Path(path)
        output_dir_metrics = output_dir.parent.parent
        self.save_metrics_history(output_dir_metrics)