---
tags:
- chat
datasets:
- anthracite-org/c2_logs_16k_llama_v1.1
- NewEden/Claude-Instruct-5K
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
License: agpl-3.0
Language:
- En
Pipeline_tag: text-generation
Base_model: google/gemma-2-9b
Tags:
- Chat
model-index:
- name: Odin-9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 36.92
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Odin-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 34.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Odin-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 12.54
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Odin-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.19
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Odin-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.56
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Odin-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 33.85
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Odin-9B
name: Open LLM Leaderboard
---
![](https://huggingface.co/Delta-Vector/Odin-9B/resolve/main/FinalOdin9B.jpg)
A earlier checkpoint of [Magnum V4 9B](https://huggingface.co/anthracite-org/magnum-v4-9b) model, using the same configuration as [Tor-8B](https://huggingface.co/Delta-Vector/Tor-8B) / [Darkens-8B](https://huggingface.co/Delta-Vector/Darkens-8B) but on Gemma rather then Nemo-8B, A finetune made for creative writing and roleplay tasks, Finetuned ontop of the base Gemma2 9B model, I trained the model for 4 epochs, with the 4 epoch checkpoint becoming the Magnum model and the 2 epoch checkpoint becoming my own personal release. This model aims to have good prose and writing while not as `Suggestive` as Magnum models usually are, along with keeping some of the intelligence that was nice to have with the Gemma2 family.
# Quants
GGUF: https://huggingface.co/Delta-Vector/Odin-9B-GGUF
EXL2: https://huggingface.co/Delta-Vector/Odin-9B-EXL2
## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
```py
"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
## System Prompting
I would highly recommend using Sao10k's Euryale System prompt, But the "Roleplay Simple" system prompt provided within SillyTavern will work aswell. Also Use `0.02 minp` for the models, The model may act dumb or otherwise stupid without it.
```
Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.
• Maintain the character persona but allow it to evolve with the story.
• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.
• All types of outputs are encouraged; respond accordingly to the narrative.
• Include dialogues, actions, and thoughts in each response.
• Utilize all five senses to describe scenarios within {{char}}'s dialogue.
• Use emotional symbols such as "!" and "~" in appropriate contexts.
• Incorporate onomatopoeia when suitable.
• Allow time for {{user}} to respond with their own input, respecting their agency.
• Act as secondary characters and NPCs as needed, and remove them when appropriate.
• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.
• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.
• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.
• Repetitive and monotonous outputs.
• Positivity bias in your replies.
• Being overly extreme or NSFW when the narrative context is inappropriate.
Follow the instructions in , avoiding the items listed in .
```
## Axolotl config
See axolotl config
Axolotl version: `0.4.1`
```yaml
base_model: /workspace/data/gemma-2-9b-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: false
liger_rms_norm: false
liger_swiglu: true
liger_cross_entropy: true
liger_fused_linear_cross_entropy: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/c2_logs_16k_llama_v1.1
type: sharegpt
conversation: chatml
- path: NewEden/Claude-Instruct-5K
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: sharegpt
conversation: chatml
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: sharegpt
conversation: chatml
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
conversation: chatml
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo_opus_misc_240827
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo_misc_part2
type: sharegpt
conversation: chatml
chat_template: chatml
shuffle_merged_datasets: false
default_system_message: "You are a helpful assistant that responds to the user."
dataset_prepared_path: /workspace/data/9b-fft-data
val_set_size: 0.0
output_dir: /workspace/data/9b-fft-out
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 9b-Nemo-config-fft
wandb_entity:
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.001
fsdp:
fsdp_config:
special_tokens:
pad_token:
```
## Credits
Thank you to [Lucy Knada](https://huggingface.co/lucyknada), [Kalomaze](https://huggingface.co/kalomaze), [Kubernetes Bad](https://huggingface.co/kubernetes-bad) and the rest of [Anthracite](https://huggingface.co/anthracite-org)
## Training
The training was done for 4 epochs. We used 8 x [H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Lucy Knada](https://huggingface.co/lucyknada) for the full-parameter fine-tuning of the model.
[](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
Nein.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Delta-Vector__Odin-9B)
| Metric |Value|
|-------------------|----:|
|Avg. |24.65|
|IFEval (0-Shot) |36.92|
|BBH (3-Shot) |34.83|
|MATH Lvl 5 (4-Shot)|12.54|
|GPQA (0-shot) |12.19|
|MuSR (0-shot) |17.56|
|MMLU-PRO (5-shot) |33.85|