Delta-Vector
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: agpl-3.0
|
3 |
+
tags:
|
4 |
+
- chat
|
5 |
+
datasets:
|
6 |
+
- NewEden/CivitAI-SD-Prompts
|
7 |
+
License: agpl-3.0
|
8 |
+
Language:
|
9 |
+
- En
|
10 |
+
Pipeline_tag: text-generation
|
11 |
+
Base_model: NewEden/Qwen-1.5B-Claude
|
12 |
+
Tags:
|
13 |
+
- Chat
|
14 |
+
---
|
15 |
+
|
16 |
+
---
|
17 |
+
### exl2 quant (measurement.json in main branch)
|
18 |
+
---
|
19 |
+
### check revisions for quants
|
20 |
+
---
|
21 |
+
|
22 |
+
This is the first in a line of models dedicated to creating Stable-Diffusion prompts when given a character appearance, This has been finetuned ontop of
|
23 |
+
[NewEden/Qwen-1.5B-Claude](https://huggingface.co/NewEden/Qwen-1.5B-Claude).
|
24 |
+
|
25 |
+
## Prompting
|
26 |
+
|
27 |
+
Model has been tuned with the Alapaca formatting. A typical input would look like this:
|
28 |
+
```
|
29 |
+
### Instruction:
|
30 |
+
Create a prompt for Stable Diffusion based on the information below.
|
31 |
+
### Input:
|
32 |
+
Rae has short has dark brown hair and brown eyes, She is commonly seen wearing her Royal Academy uniform, which consists of a red jacket with gold lines, a white ruffled necktie, a red bow tie with an attached blue gem, and a long black skirt with white lines. Along with her uniform, she wears black leggings and brown shoes.
|
33 |
+
### Response:
|
34 |
+
```
|
35 |
+
|
36 |
+
## System Prompting
|
37 |
+
|
38 |
+
I would highly recommend using the following system prompt for this model.
|
39 |
+
|
40 |
+
```
|
41 |
+
Create a prompt for Stable Diffusion based on the information below.
|
42 |
+
```
|
43 |
+
|
44 |
+
## Axolotl Config
|
45 |
+
|
46 |
+
<details><summary>See Axolotl Trainer config</summary>
|
47 |
+
|
48 |
+
```yaml
|
49 |
+
base_model: NewEden/Qwen-1.5B-Claude
|
50 |
+
model_type: AutoModelForCausalLM
|
51 |
+
tokenizer_type: AutoTokenizer
|
52 |
+
|
53 |
+
trust_remote_code: true
|
54 |
+
|
55 |
+
load_in_8bit: false
|
56 |
+
load_in_4bit: false
|
57 |
+
strict: false
|
58 |
+
|
59 |
+
datasets:
|
60 |
+
- path: civit-slop-combined.jsonl
|
61 |
+
type: alpaca
|
62 |
+
conversation: mpt-30b-instruct
|
63 |
+
|
64 |
+
chat_template: alpaca
|
65 |
+
|
66 |
+
dataset_prepared_path:
|
67 |
+
val_set_size: 0.05
|
68 |
+
output_dir: ./outputs/sd-prompter
|
69 |
+
sequence_len: 2048
|
70 |
+
sample_packing: true
|
71 |
+
eval_sample_packing: false
|
72 |
+
pad_to_sequence_len: true
|
73 |
+
|
74 |
+
adapter:
|
75 |
+
lora_model_dir:
|
76 |
+
lora_r:
|
77 |
+
lora_alpha:
|
78 |
+
lora_dropout:
|
79 |
+
lora_target_linear: true
|
80 |
+
lora_fan_in_fan_out:
|
81 |
+
|
82 |
+
wandb_project: SDprompt-qwen
|
83 |
+
wandb_entity:
|
84 |
+
wandb_watch:
|
85 |
+
wandb_name: qwen1.5b-2
|
86 |
+
wandb_log_model:
|
87 |
+
|
88 |
+
gradient_accumulation_steps: 64
|
89 |
+
micro_batch_size: 2
|
90 |
+
num_epochs: 3
|
91 |
+
optimizer: adamw_torch
|
92 |
+
lr_scheduler: cosine
|
93 |
+
learning_rate: 0.00002
|
94 |
+
|
95 |
+
train_on_inputs: false
|
96 |
+
group_by_length: false
|
97 |
+
bf16: auto
|
98 |
+
fp16:
|
99 |
+
tf32: true
|
100 |
+
|
101 |
+
gradient_checkpointing: true
|
102 |
+
gradient_checkpointing_kwargs:
|
103 |
+
use_reentrant: false
|
104 |
+
early_stopping_patience:
|
105 |
+
resume_from_checkpoint:
|
106 |
+
local_rank:
|
107 |
+
logging_steps: 1
|
108 |
+
xformers_attention:
|
109 |
+
flash_attention: true
|
110 |
+
|
111 |
+
warmup_ratio: 0.05
|
112 |
+
evals_per_epoch: 4
|
113 |
+
saves_per_epoch: 1
|
114 |
+
debug:
|
115 |
+
#deepspeed: deepspeed_configs/zero2.json
|
116 |
+
#deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json
|
117 |
+
weight_decay: 0.0
|
118 |
+
#fsdp:
|
119 |
+
#fsdp_config:
|
120 |
+
# fsdp_limit_all_gathers: true
|
121 |
+
# fsdp_sync_module_states: true
|
122 |
+
# fsdp_offload_params: true
|
123 |
+
# fsdp_use_orig_params: false
|
124 |
+
# fsdp_cpu_ram_efficient_loading: true
|
125 |
+
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
126 |
+
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
|
127 |
+
# fsdp_state_dict_type: FULL_STATE_DICT
|
128 |
+
special_tokens:
|
129 |
+
```
|
130 |
+
</details><br>
|
131 |
+
|
132 |
+
## Credits
|
133 |
+
|
134 |
+
Thank you to [Kubernetes Bad](https://huggingface.co/kubernetes-bad)
|
135 |
+
|
136 |
+
## Training
|
137 |
+
The training was done for 2 epochs. I used 2 x [RTX 6000s](https://www.nvidia.com/en-us/design-visualization/rtx-6000/) GPUs graciously provided by [Kubernetes Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model.
|