ppo-MountainCar-v0 / config.json
Delview's picture
Upload PPO MountainCar-v0 trained agent
d59ba00 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e68927980d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6892798160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e68927981f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6892798280>", "_build": "<function ActorCriticPolicy._build at 0x7e6892798310>", "forward": "<function ActorCriticPolicy.forward at 0x7e68927983a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6892798430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e68927984c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6892798550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e68927985e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6892798670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6892798700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e689278c980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2007040, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708137662249934093, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAABhefL+RGw69N2C8PpHVAbyTheu+Kws2PEJUib9mKi08Wuc0v+igXj2D5ii/DyxaPboroL6cUgE7C6vRvsUTbbtFufi+pipHO/Omhr/OYtI8uubVvkWa7ztR8Ze/a0Wxux3xQj529FM9Z6dKv8UiBr1TcrO+ONX5vOy4P7/pOk89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFvAAAAAAACMAWyUS2+MAXSUR0CYqeTl1bJPdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYqfSPluFYdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYqftihFmWdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CYqgNaQmu1dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYqhHDrJKbdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYqg+1Bt1qdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYqhk6tDD1dX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CYqjX4CZF5dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0CYqkQ2dd3TdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqlv8IiTudX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CYql9rGipOdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYqmqAjIJadX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqm3+MqBmdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYqnS2H+IedX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqop35eqrdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYqqTGHYYjdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CYqrL+xW1ddX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYqrewcHW0dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYqsIbOu7pdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqszYmLLqdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CYquJF9a2XdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0CYquY64lQedX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CYquu+yquKdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYqwbnoxHodX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqxG3WnTBdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYqyqfvnbJdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYqyjnmq5tdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqziaiKzidX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYqzxnnMdMdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYq0Lmp2lmdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CYwhQ7LdN4dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYwhx/ustDdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYwjnqmj0udX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYwlNQCSzPdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYwk/tpmEodX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYwnKIBRyfdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYwnBsANobdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYwnZydWhidX2UKGgGR8BWgAAAAAAAaAdLWmgIR0CYwoxcVxjsdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYwpWjoIOZdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYwqBEKE39dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CYwqVrRBu5dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYwrlKsdT6dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYwsL3bmEHdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYwsNsWO6vdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0CYwspztCzDdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYwuAEdNnHdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYwvvq1PWQdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYwxWAf+0gdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CYwxdSVGCqdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CYwyeUY8+zdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CYwzEtuk1udX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYwzhfjS5RdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYwzeUILPVdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYw1IcR15jdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYw1gdwNsndX2UKGgGR8BWgAAAAAAAaAdLWmgIR0CYw1+h4+r3dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYw29YfW+XdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYw4NCJGe+dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYw5H80k4WdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0CYw5wqiGnGdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYw52QXAM2dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYw7OMERradX2UKGgGR8BWwAAAAAAAaAdLW2gIR0CYw8KISDh+dX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CYw8zHS4OMdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYw8/fwZwXdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CYw9Xj2i+MdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYw+fTkQwsdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CYxAIvrWy1dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYxA1xKg7HdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0CYxBVFx4pudX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYxCohY/3WdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYxC82Jiy6dX2UKGgGR8BWgAAAAAAAaAdLWmgIR0CYxD6WgOBldX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYxEFKTSssdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYxFDh99c9dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYxFphnanKdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0CYxGbYbsF/dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYxGNNJvpAdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CYxHpVCHARdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CYxIR5C4SZdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CYxJtCzC1rdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYxLPcSGrTdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CYxMuBMBZIdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYxN8gpz91dX2UKGgGR8BkQAAAAAAAaAdLomgIR0CYxPHTqjagdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYxPSlWOp9dX2UKGgGR8BXAAAAAAAAaAdLXGgIR0CYxPiY9gWrdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CYxPIQvpQldX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYxQA/s3Q2dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CYxQ8OkLx7dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0CYxQspobn6dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYxSgQpWmxdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CYxSpNbkfcdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0CYxTyksSTRdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0CYxVZB9kSVdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CYxXgWJrLydX2UKGgGR8BjAAAAAAAAaAdLmGgIR0CYxX+Q2dd3dX2UKGgGR8BjAAAAAAAAaAdLmGgIR0CYxYnXumaZdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CYxYv7WNFSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2450, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}