|
'''
|
|
# ------------------------------------------------------------------------
|
|
#
|
|
# Tiled VAE
|
|
#
|
|
# Introducing a revolutionary new optimization designed to make
|
|
# the VAE work with giant images on limited VRAM!
|
|
# Say goodbye to the frustration of OOM and hello to seamless output!
|
|
#
|
|
# ------------------------------------------------------------------------
|
|
#
|
|
# This script is a wild hack that splits the image into tiles,
|
|
# encodes each tile separately, and merges the result back together.
|
|
#
|
|
# Advantages:
|
|
# - The VAE can now work with giant images on limited VRAM
|
|
# (~10 GB for 8K images!)
|
|
# - The merged output is completely seamless without any post-processing.
|
|
#
|
|
# Drawbacks:
|
|
# - NaNs always appear in for 8k images when you use fp16 (half) VAE
|
|
# You must use --no-half-vae to disable half VAE for that giant image.
|
|
# - The gradient calculation is not compatible with this hack. It
|
|
# will break any backward() or torch.autograd.grad() that passes VAE.
|
|
# (But you can still use the VAE to generate training data.)
|
|
#
|
|
# How it works:
|
|
# 1. The image is split into tiles, which are then padded with 11/32 pixels' in the decoder/encoder.
|
|
# 2. When Fast Mode is disabled:
|
|
# 1. The original VAE forward is decomposed into a task queue and a task worker, which starts to process each tile.
|
|
# 2. When GroupNorm is needed, it suspends, stores current GroupNorm mean and var, send everything to RAM, and turns to the next tile.
|
|
# 3. After all GroupNorm means and vars are summarized, it applies group norm to tiles and continues.
|
|
# 4. A zigzag execution order is used to reduce unnecessary data transfer.
|
|
# 3. When Fast Mode is enabled:
|
|
# 1. The original input is downsampled and passed to a separate task queue.
|
|
# 2. Its group norm parameters are recorded and used by all tiles' task queues.
|
|
# 3. Each tile is separately processed without any RAM-VRAM data transfer.
|
|
# 4. After all tiles are processed, tiles are written to a result buffer and returned.
|
|
# Encoder color fix = only estimate GroupNorm before downsampling, i.e., run in a semi-fast mode.
|
|
#
|
|
# Enjoy!
|
|
#
|
|
# @Author: LI YI @ Nanyang Technological University - Singapore
|
|
# @Date: 2023-03-02
|
|
# @License: CC BY-NC-SA 4.0
|
|
#
|
|
# Please give https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111
|
|
# a star if you like the project!
|
|
#
|
|
# -------------------------------------------------------------------------
|
|
'''
|
|
|
|
import gc
|
|
import math
|
|
from time import time
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
import torch.version
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import comfy
|
|
import comfy.model_management
|
|
from comfy.model_management import processing_interrupted
|
|
import contextlib
|
|
|
|
opt_C = 4
|
|
opt_f = 8
|
|
is_sdxl = False
|
|
disable_nan_check = True
|
|
|
|
class Device: ...
|
|
devices = Device()
|
|
devices.device = comfy.model_management.get_torch_device()
|
|
devices.cpu = torch.device('cpu')
|
|
devices.torch_gc = lambda: comfy.model_management.soft_empty_cache()
|
|
devices.get_optimal_device = lambda: comfy.model_management.get_torch_device()
|
|
|
|
class NansException(Exception): ...
|
|
def test_for_nans(x, where):
|
|
if disable_nan_check:
|
|
return
|
|
if not torch.all(torch.isnan(x)).item():
|
|
return
|
|
if where == "unet":
|
|
message = "A tensor with all NaNs was produced in Unet."
|
|
if comfy.model_management.unet_dtype(x.device) != torch.float32:
|
|
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this."
|
|
elif where == "vae":
|
|
message = "A tensor with all NaNs was produced in VAE."
|
|
if comfy.model_management.unet_dtype(x.device) != torch.float32 and comfy.model_management.vae_dtype() != torch.float32:
|
|
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this."
|
|
else:
|
|
message = "A tensor with all NaNs was produced."
|
|
message += " Use --disable-nan-check commandline argument to disable this check."
|
|
raise NansException(message)
|
|
|
|
def _autocast(disable=False):
|
|
if disable:
|
|
return contextlib.nullcontext()
|
|
|
|
if comfy.model_management.unet_dtype() == torch.float32 or comfy.model_management.get_torch_device() == torch.device("mps"):
|
|
return contextlib.nullcontext()
|
|
|
|
|
|
autocast_device = comfy.model_management.get_autocast_device(comfy.model_management.get_torch_device())
|
|
return torch.autocast(autocast_device)
|
|
|
|
def without_autocast(disable=False):
|
|
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
|
|
|
|
devices.test_for_nans = test_for_nans
|
|
devices.autocast = _autocast
|
|
devices.without_autocast = without_autocast
|
|
|
|
def cheap_approximation(sample):
|
|
|
|
|
|
if is_sdxl:
|
|
coeffs = [
|
|
[ 0.3448, 0.4168, 0.4395],
|
|
[-0.1953, -0.0290, 0.0250],
|
|
[ 0.1074, 0.0886, -0.0163],
|
|
[-0.3730, -0.2499, -0.2088],
|
|
]
|
|
else:
|
|
coeffs = [
|
|
[ 0.298, 0.207, 0.208],
|
|
[ 0.187, 0.286, 0.173],
|
|
[-0.158, 0.189, 0.264],
|
|
[-0.184, -0.271, -0.473],
|
|
]
|
|
|
|
coefs = torch.tensor(coeffs).to(sample.device)
|
|
|
|
x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs)
|
|
|
|
return x_sample
|
|
|
|
def get_rcmd_enc_tsize():
|
|
if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]:
|
|
total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20
|
|
if total_memory > 16*1000: ENCODER_TILE_SIZE = 3072
|
|
elif total_memory > 12*1000: ENCODER_TILE_SIZE = 2048
|
|
elif total_memory > 8*1000: ENCODER_TILE_SIZE = 1536
|
|
else: ENCODER_TILE_SIZE = 960
|
|
else: ENCODER_TILE_SIZE = 512
|
|
return ENCODER_TILE_SIZE
|
|
|
|
|
|
def get_rcmd_dec_tsize():
|
|
if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]:
|
|
total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20
|
|
if total_memory > 30*1000: DECODER_TILE_SIZE = 256
|
|
elif total_memory > 16*1000: DECODER_TILE_SIZE = 192
|
|
elif total_memory > 12*1000: DECODER_TILE_SIZE = 128
|
|
elif total_memory > 8*1000: DECODER_TILE_SIZE = 96
|
|
else: DECODER_TILE_SIZE = 64
|
|
else: DECODER_TILE_SIZE = 64
|
|
return DECODER_TILE_SIZE
|
|
|
|
|
|
def inplace_nonlinearity(x):
|
|
|
|
return F.silu(x, inplace=True)
|
|
|
|
def _attn_forward(self, x):
|
|
|
|
|
|
h_ = x
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
h_ = self.optimized_attention(q, k, v)
|
|
h_ = self.proj_out(h_)
|
|
return h_
|
|
|
|
def get_attn_func():
|
|
return _attn_forward
|
|
|
|
def attn2task(task_queue, net):
|
|
|
|
attn_forward = get_attn_func()
|
|
task_queue.append(('store_res', lambda x: x))
|
|
task_queue.append(('pre_norm', net.norm))
|
|
task_queue.append(('attn', lambda x, net=net: attn_forward(net, x)))
|
|
task_queue.append(['add_res', None])
|
|
|
|
|
|
def resblock2task(queue, block):
|
|
"""
|
|
Turn a ResNetBlock into a sequence of tasks and append to the task queue
|
|
|
|
@param queue: the target task queue
|
|
@param block: ResNetBlock
|
|
|
|
"""
|
|
if block.in_channels != block.out_channels:
|
|
if block.use_conv_shortcut:
|
|
queue.append(('store_res', block.conv_shortcut))
|
|
else:
|
|
queue.append(('store_res', block.nin_shortcut))
|
|
else:
|
|
queue.append(('store_res', lambda x: x))
|
|
queue.append(('pre_norm', block.norm1))
|
|
queue.append(('silu', inplace_nonlinearity))
|
|
queue.append(('conv1', block.conv1))
|
|
queue.append(('pre_norm', block.norm2))
|
|
queue.append(('silu', inplace_nonlinearity))
|
|
queue.append(('conv2', block.conv2))
|
|
queue.append(['add_res', None])
|
|
|
|
|
|
def build_sampling(task_queue, net, is_decoder):
|
|
"""
|
|
Build the sampling part of a task queue
|
|
@param task_queue: the target task queue
|
|
@param net: the network
|
|
@param is_decoder: currently building decoder or encoder
|
|
"""
|
|
if is_decoder:
|
|
resblock2task(task_queue, net.mid.block_1)
|
|
attn2task(task_queue, net.mid.attn_1)
|
|
resblock2task(task_queue, net.mid.block_2)
|
|
resolution_iter = reversed(range(net.num_resolutions))
|
|
block_ids = net.num_res_blocks + 1
|
|
condition = 0
|
|
module = net.up
|
|
func_name = 'upsample'
|
|
else:
|
|
resolution_iter = range(net.num_resolutions)
|
|
block_ids = net.num_res_blocks
|
|
condition = net.num_resolutions - 1
|
|
module = net.down
|
|
func_name = 'downsample'
|
|
|
|
for i_level in resolution_iter:
|
|
for i_block in range(block_ids):
|
|
resblock2task(task_queue, module[i_level].block[i_block])
|
|
if i_level != condition:
|
|
task_queue.append((func_name, getattr(module[i_level], func_name)))
|
|
|
|
if not is_decoder:
|
|
resblock2task(task_queue, net.mid.block_1)
|
|
attn2task(task_queue, net.mid.attn_1)
|
|
resblock2task(task_queue, net.mid.block_2)
|
|
|
|
|
|
def build_task_queue(net, is_decoder):
|
|
"""
|
|
Build a single task queue for the encoder or decoder
|
|
@param net: the VAE decoder or encoder network
|
|
@param is_decoder: currently building decoder or encoder
|
|
@return: the task queue
|
|
"""
|
|
task_queue = []
|
|
task_queue.append(('conv_in', net.conv_in))
|
|
|
|
|
|
|
|
build_sampling(task_queue, net, is_decoder)
|
|
|
|
if not is_decoder or not net.give_pre_end:
|
|
task_queue.append(('pre_norm', net.norm_out))
|
|
task_queue.append(('silu', inplace_nonlinearity))
|
|
task_queue.append(('conv_out', net.conv_out))
|
|
if is_decoder and net.tanh_out:
|
|
task_queue.append(('tanh', torch.tanh))
|
|
|
|
return task_queue
|
|
|
|
|
|
def clone_task_queue(task_queue):
|
|
"""
|
|
Clone a task queue
|
|
@param task_queue: the task queue to be cloned
|
|
@return: the cloned task queue
|
|
"""
|
|
return [[item for item in task] for task in task_queue]
|
|
|
|
|
|
def get_var_mean(input, num_groups, eps=1e-6):
|
|
"""
|
|
Get mean and var for group norm
|
|
"""
|
|
b, c = input.size(0), input.size(1)
|
|
channel_in_group = int(c/num_groups)
|
|
input_reshaped = input.contiguous().view(1, int(b * num_groups), channel_in_group, *input.size()[2:])
|
|
var, mean = torch.var_mean(input_reshaped, dim=[0, 2, 3, 4], unbiased=False)
|
|
return var, mean
|
|
|
|
|
|
def custom_group_norm(input, num_groups, mean, var, weight=None, bias=None, eps=1e-6):
|
|
"""
|
|
Custom group norm with fixed mean and var
|
|
|
|
@param input: input tensor
|
|
@param num_groups: number of groups. by default, num_groups = 32
|
|
@param mean: mean, must be pre-calculated by get_var_mean
|
|
@param var: var, must be pre-calculated by get_var_mean
|
|
@param weight: weight, should be fetched from the original group norm
|
|
@param bias: bias, should be fetched from the original group norm
|
|
@param eps: epsilon, by default, eps = 1e-6 to match the original group norm
|
|
|
|
@return: normalized tensor
|
|
"""
|
|
b, c = input.size(0), input.size(1)
|
|
channel_in_group = int(c/num_groups)
|
|
input_reshaped = input.contiguous().view(
|
|
1, int(b * num_groups), channel_in_group, *input.size()[2:])
|
|
|
|
out = F.batch_norm(input_reshaped, mean, var, weight=None, bias=None, training=False, momentum=0, eps=eps)
|
|
out = out.view(b, c, *input.size()[2:])
|
|
|
|
|
|
if weight is not None:
|
|
out *= weight.view(1, -1, 1, 1)
|
|
if bias is not None:
|
|
out += bias.view(1, -1, 1, 1)
|
|
return out
|
|
|
|
|
|
def crop_valid_region(x, input_bbox, target_bbox, is_decoder):
|
|
"""
|
|
Crop the valid region from the tile
|
|
@param x: input tile
|
|
@param input_bbox: original input bounding box
|
|
@param target_bbox: output bounding box
|
|
@param scale: scale factor
|
|
@return: cropped tile
|
|
"""
|
|
padded_bbox = [i * 8 if is_decoder else i//8 for i in input_bbox]
|
|
margin = [target_bbox[i] - padded_bbox[i] for i in range(4)]
|
|
return x[:, :, margin[2]:x.size(2)+margin[3], margin[0]:x.size(3)+margin[1]]
|
|
|
|
|
|
|
|
|
|
def perfcount(fn):
|
|
def wrapper(*args, **kwargs):
|
|
ts = time()
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.reset_peak_memory_stats(devices.device)
|
|
devices.torch_gc()
|
|
gc.collect()
|
|
|
|
ret = fn(*args, **kwargs)
|
|
|
|
devices.torch_gc()
|
|
gc.collect()
|
|
if torch.cuda.is_available():
|
|
vram = torch.cuda.max_memory_allocated(devices.device) / 2**20
|
|
print(f'[Tiled VAE]: Done in {time() - ts:.3f}s, max VRAM alloc {vram:.3f} MB')
|
|
else:
|
|
print(f'[Tiled VAE]: Done in {time() - ts:.3f}s')
|
|
|
|
return ret
|
|
return wrapper
|
|
|
|
|
|
|
|
|
|
class GroupNormParam:
|
|
|
|
def __init__(self):
|
|
self.var_list = []
|
|
self.mean_list = []
|
|
self.pixel_list = []
|
|
self.weight = None
|
|
self.bias = None
|
|
|
|
def add_tile(self, tile, layer):
|
|
var, mean = get_var_mean(tile, 32)
|
|
|
|
|
|
if var.dtype == torch.float16 and var.isinf().any():
|
|
fp32_tile = tile.float()
|
|
var, mean = get_var_mean(fp32_tile, 32)
|
|
|
|
|
|
|
|
|
|
self.var_list.append(var)
|
|
self.mean_list.append(mean)
|
|
self.pixel_list.append(
|
|
tile.shape[2]*tile.shape[3])
|
|
if hasattr(layer, 'weight'):
|
|
self.weight = layer.weight
|
|
self.bias = layer.bias
|
|
else:
|
|
self.weight = None
|
|
self.bias = None
|
|
|
|
def summary(self):
|
|
"""
|
|
summarize the mean and var and return a function
|
|
that apply group norm on each tile
|
|
"""
|
|
if len(self.var_list) == 0: return None
|
|
|
|
var = torch.vstack(self.var_list)
|
|
mean = torch.vstack(self.mean_list)
|
|
max_value = max(self.pixel_list)
|
|
pixels = torch.tensor(self.pixel_list, dtype=torch.float32, device=devices.device) / max_value
|
|
sum_pixels = torch.sum(pixels)
|
|
pixels = pixels.unsqueeze(1) / sum_pixels
|
|
|
|
|
|
var = torch.sum(var * pixels, dim=0)
|
|
mean = torch.sum(mean * pixels, dim=0)
|
|
return lambda x: custom_group_norm(x, 32, mean, var, self.weight, self.bias)
|
|
|
|
@staticmethod
|
|
def from_tile(tile, norm):
|
|
"""
|
|
create a function from a single tile without summary
|
|
"""
|
|
var, mean = get_var_mean(tile, 32)
|
|
if var.dtype == torch.float16 and var.isinf().any():
|
|
fp32_tile = tile.float()
|
|
var, mean = get_var_mean(fp32_tile, 32)
|
|
|
|
if var.device.type == 'mps':
|
|
|
|
var = torch.clamp(var, 0, 60000)
|
|
var = var.half()
|
|
mean = mean.half()
|
|
if hasattr(norm, 'weight'):
|
|
weight = norm.weight
|
|
bias = norm.bias
|
|
else:
|
|
weight = None
|
|
bias = None
|
|
|
|
def group_norm_func(x, mean=mean, var=var, weight=weight, bias=bias):
|
|
return custom_group_norm(x, 32, mean, var, weight, bias, 1e-6)
|
|
return group_norm_func
|
|
|
|
|
|
class VAEHook:
|
|
|
|
def __init__(self, net, tile_size, is_decoder:bool, fast_decoder:bool, fast_encoder:bool, color_fix:bool, to_gpu:bool=False):
|
|
self.net = net
|
|
self.tile_size = tile_size
|
|
self.is_decoder = is_decoder
|
|
self.fast_mode = (fast_encoder and not is_decoder) or (fast_decoder and is_decoder)
|
|
self.color_fix = color_fix and not is_decoder
|
|
self.to_gpu = to_gpu
|
|
self.pad = 11 if is_decoder else 32
|
|
|
|
def __call__(self, x):
|
|
|
|
try:
|
|
|
|
|
|
B, C, H, W = x.shape
|
|
if False:
|
|
print("[Tiled VAE]: the input size is tiny and unnecessary to tile.", x.shape, self.pad * 2 + self.tile_size)
|
|
return self.net.original_forward(x)
|
|
else:
|
|
return self.vae_tile_forward(x)
|
|
finally:
|
|
pass
|
|
|
|
|
|
def get_best_tile_size(self, lowerbound, upperbound):
|
|
"""
|
|
Get the best tile size for GPU memory
|
|
"""
|
|
divider = 32
|
|
while divider >= 2:
|
|
remainer = lowerbound % divider
|
|
if remainer == 0:
|
|
return lowerbound
|
|
candidate = lowerbound - remainer + divider
|
|
if candidate <= upperbound:
|
|
return candidate
|
|
divider //= 2
|
|
return lowerbound
|
|
|
|
def split_tiles(self, h, w):
|
|
"""
|
|
Tool function to split the image into tiles
|
|
@param h: height of the image
|
|
@param w: width of the image
|
|
@return: tile_input_bboxes, tile_output_bboxes
|
|
"""
|
|
tile_input_bboxes, tile_output_bboxes = [], []
|
|
tile_size = self.tile_size
|
|
pad = self.pad
|
|
num_height_tiles = math.ceil((h - 2 * pad) / tile_size)
|
|
num_width_tiles = math.ceil((w - 2 * pad) / tile_size)
|
|
|
|
|
|
num_height_tiles = max(num_height_tiles, 1)
|
|
num_width_tiles = max(num_width_tiles, 1)
|
|
|
|
|
|
real_tile_height = math.ceil((h - 2 * pad) / num_height_tiles)
|
|
real_tile_width = math.ceil((w - 2 * pad) / num_width_tiles)
|
|
real_tile_height = self.get_best_tile_size(real_tile_height, tile_size)
|
|
real_tile_width = self.get_best_tile_size(real_tile_width, tile_size)
|
|
|
|
print(f'[Tiled VAE]: split to {num_height_tiles}x{num_width_tiles} = {num_height_tiles*num_width_tiles} tiles. ' +
|
|
f'Optimal tile size {real_tile_width}x{real_tile_height}, original tile size {tile_size}x{tile_size}')
|
|
|
|
for i in range(num_height_tiles):
|
|
for j in range(num_width_tiles):
|
|
|
|
|
|
input_bbox = [
|
|
pad + j * real_tile_width,
|
|
min(pad + (j + 1) * real_tile_width, w),
|
|
pad + i * real_tile_height,
|
|
min(pad + (i + 1) * real_tile_height, h),
|
|
]
|
|
|
|
|
|
output_bbox = [
|
|
input_bbox[0] if input_bbox[0] > pad else 0,
|
|
input_bbox[1] if input_bbox[1] < w - pad else w,
|
|
input_bbox[2] if input_bbox[2] > pad else 0,
|
|
input_bbox[3] if input_bbox[3] < h - pad else h,
|
|
]
|
|
|
|
|
|
output_bbox = [x * 8 if self.is_decoder else x // 8 for x in output_bbox]
|
|
tile_output_bboxes.append(output_bbox)
|
|
|
|
|
|
tile_input_bboxes.append([
|
|
max(0, input_bbox[0] - pad),
|
|
min(w, input_bbox[1] + pad),
|
|
max(0, input_bbox[2] - pad),
|
|
min(h, input_bbox[3] + pad),
|
|
])
|
|
|
|
return tile_input_bboxes, tile_output_bboxes
|
|
|
|
@torch.no_grad()
|
|
def estimate_group_norm(self, z, task_queue, color_fix):
|
|
device = z.device
|
|
tile = z
|
|
last_id = len(task_queue) - 1
|
|
while last_id >= 0 and task_queue[last_id][0] != 'pre_norm':
|
|
last_id -= 1
|
|
if last_id <= 0 or task_queue[last_id][0] != 'pre_norm':
|
|
raise ValueError('No group norm found in the task queue')
|
|
|
|
for i in range(last_id + 1):
|
|
task = task_queue[i]
|
|
if task[0] == 'pre_norm':
|
|
group_norm_func = GroupNormParam.from_tile(tile, task[1])
|
|
task_queue[i] = ('apply_norm', group_norm_func)
|
|
if i == last_id:
|
|
return True
|
|
tile = group_norm_func(tile)
|
|
elif task[0] == 'store_res':
|
|
task_id = i + 1
|
|
while task_id < last_id and task_queue[task_id][0] != 'add_res':
|
|
task_id += 1
|
|
if task_id >= last_id:
|
|
continue
|
|
task_queue[task_id][1] = task[1](tile)
|
|
elif task[0] == 'add_res':
|
|
tile += task[1].to(device)
|
|
task[1] = None
|
|
elif color_fix and task[0] == 'downsample':
|
|
for j in range(i, last_id + 1):
|
|
if task_queue[j][0] == 'store_res':
|
|
task_queue[j] = ('store_res_cpu', task_queue[j][1])
|
|
return True
|
|
else:
|
|
tile = task[1](tile)
|
|
try:
|
|
devices.test_for_nans(tile, "vae")
|
|
except:
|
|
print(f'Nan detected in fast mode estimation. Fast mode disabled.')
|
|
return False
|
|
|
|
raise IndexError('Should not reach here')
|
|
|
|
@perfcount
|
|
@torch.no_grad()
|
|
def vae_tile_forward(self, z):
|
|
"""
|
|
Decode a latent vector z into an image in a tiled manner.
|
|
@param z: latent vector
|
|
@return: image
|
|
"""
|
|
device = next(self.net.parameters()).device
|
|
net = self.net
|
|
tile_size = self.tile_size
|
|
is_decoder = self.is_decoder
|
|
|
|
z = z.detach()
|
|
|
|
N, height, width = z.shape[0], z.shape[2], z.shape[3]
|
|
net.last_z_shape = z.shape
|
|
|
|
|
|
print(f'[Tiled VAE]: input_size: {z.shape}, tile_size: {tile_size}, padding: {self.pad}')
|
|
|
|
in_bboxes, out_bboxes = self.split_tiles(height, width)
|
|
|
|
|
|
tiles = []
|
|
for input_bbox in in_bboxes:
|
|
tile = z[:, :, input_bbox[2]:input_bbox[3], input_bbox[0]:input_bbox[1]].cpu()
|
|
tiles.append(tile)
|
|
|
|
num_tiles = len(tiles)
|
|
num_completed = 0
|
|
|
|
|
|
single_task_queue = build_task_queue(net, is_decoder)
|
|
if self.fast_mode:
|
|
|
|
|
|
scale_factor = tile_size / max(height, width)
|
|
z = z.to(device)
|
|
downsampled_z = F.interpolate(z, scale_factor=scale_factor, mode='nearest-exact')
|
|
|
|
print(f'[Tiled VAE]: Fast mode enabled, estimating group norm parameters on {downsampled_z.shape[3]} x {downsampled_z.shape[2]} image')
|
|
|
|
|
|
|
|
std_old, mean_old = torch.std_mean(z, dim=[0, 2, 3], keepdim=True)
|
|
std_new, mean_new = torch.std_mean(downsampled_z, dim=[0, 2, 3], keepdim=True)
|
|
downsampled_z = (downsampled_z - mean_new) / std_new * std_old + mean_old
|
|
del std_old, mean_old, std_new, mean_new
|
|
|
|
|
|
downsampled_z = torch.clamp_(downsampled_z, min=z.min(), max=z.max())
|
|
estimate_task_queue = clone_task_queue(single_task_queue)
|
|
if self.estimate_group_norm(downsampled_z, estimate_task_queue, color_fix=self.color_fix):
|
|
single_task_queue = estimate_task_queue
|
|
del downsampled_z
|
|
|
|
task_queues = [clone_task_queue(single_task_queue) for _ in range(num_tiles)]
|
|
|
|
|
|
result = None
|
|
result_approx = None
|
|
try:
|
|
with devices.autocast():
|
|
result_approx = torch.cat([F.interpolate(cheap_approximation(x).unsqueeze(0), scale_factor=opt_f, mode='nearest-exact') for x in z], dim=0).cpu()
|
|
except: pass
|
|
|
|
del z
|
|
|
|
|
|
pbar = tqdm(total=num_tiles * len(task_queues[0]), desc=f"[Tiled VAE]: Executing {'Decoder' if is_decoder else 'Encoder'} Task Queue: ")
|
|
pbar_comfy = comfy.utils.ProgressBar(num_tiles * len(task_queues[0]))
|
|
|
|
|
|
|
|
forward = True
|
|
interrupted = False
|
|
state_interrupted = processing_interrupted()
|
|
|
|
while True:
|
|
if state_interrupted: interrupted = True ; break
|
|
|
|
group_norm_param = GroupNormParam()
|
|
for i in range(num_tiles) if forward else reversed(range(num_tiles)):
|
|
if state_interrupted: interrupted = True ; break
|
|
|
|
tile = tiles[i].to(device)
|
|
input_bbox = in_bboxes[i]
|
|
task_queue = task_queues[i]
|
|
|
|
interrupted = False
|
|
while len(task_queue) > 0:
|
|
if state_interrupted: interrupted = True ; break
|
|
|
|
|
|
|
|
task = task_queue.pop(0)
|
|
if task[0] == 'pre_norm':
|
|
group_norm_param.add_tile(tile, task[1])
|
|
break
|
|
elif task[0] == 'store_res' or task[0] == 'store_res_cpu':
|
|
task_id = 0
|
|
res = task[1](tile)
|
|
if not self.fast_mode or task[0] == 'store_res_cpu':
|
|
res = res.cpu()
|
|
while task_queue[task_id][0] != 'add_res':
|
|
task_id += 1
|
|
task_queue[task_id][1] = res
|
|
elif task[0] == 'add_res':
|
|
tile += task[1].to(device)
|
|
task[1] = None
|
|
else:
|
|
tile = task[1](tile)
|
|
pbar.update(1)
|
|
pbar_comfy.update(1)
|
|
|
|
|
|
if interrupted: break
|
|
|
|
|
|
|
|
devices.test_for_nans(tile, "vae")
|
|
|
|
if len(task_queue) == 0:
|
|
tiles[i] = None
|
|
num_completed += 1
|
|
if result is None:
|
|
result = torch.zeros((N, tile.shape[1], height * 8 if is_decoder else height // 8, width * 8 if is_decoder else width // 8), device=device, requires_grad=False)
|
|
result[:, :, out_bboxes[i][2]:out_bboxes[i][3], out_bboxes[i][0]:out_bboxes[i][1]] = crop_valid_region(tile, in_bboxes[i], out_bboxes[i], is_decoder)
|
|
del tile
|
|
elif i == num_tiles - 1 and forward:
|
|
forward = False
|
|
tiles[i] = tile
|
|
elif i == 0 and not forward:
|
|
forward = True
|
|
tiles[i] = tile
|
|
else:
|
|
tiles[i] = tile.cpu()
|
|
del tile
|
|
|
|
if interrupted: break
|
|
if num_completed == num_tiles: break
|
|
|
|
|
|
group_norm_func = group_norm_param.summary()
|
|
if group_norm_func is not None:
|
|
for i in range(num_tiles):
|
|
task_queue = task_queues[i]
|
|
task_queue.insert(0, ('apply_norm', group_norm_func))
|
|
|
|
|
|
pbar.close()
|
|
if interrupted:
|
|
del result, result_approx
|
|
comfy.model_management.throw_exception_if_processing_interrupted()
|
|
vae_dtype = comfy.model_management.vae_dtype()
|
|
return result.to(dtype=vae_dtype, device=device) if result is not None else result_approx.to(device=device, dtype=vae_dtype)
|
|
|
|
|
|
from nodes import VAEEncode, VAEDecode
|
|
class TiledVAE:
|
|
def process(self, *args, **kwargs):
|
|
samples = kwargs['samples'] if 'samples' in kwargs else (kwargs['pixels'] if 'pixels' in kwargs else args[0])
|
|
_vae = kwargs['vae'] if 'vae' in kwargs else args[1]
|
|
tile_size = kwargs['tile_size'] if 'tile_size' in kwargs else args[2]
|
|
fast = kwargs['fast'] if 'fast' in kwargs else args[3]
|
|
color_fix = kwargs['color_fix'] if 'color_fix' in kwargs else False
|
|
is_decoder = self.is_decoder
|
|
|
|
|
|
vae = _vae.first_stage_model
|
|
encoder = vae.encoder
|
|
decoder = vae.decoder
|
|
|
|
|
|
|
|
|
|
if isinstance(encoder.forward, VAEHook):
|
|
encoder.forward.net = None
|
|
encoder.forward = encoder.original_forward
|
|
if isinstance(decoder.forward, VAEHook):
|
|
decoder.forward.net = None
|
|
decoder.forward = decoder.original_forward
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not hasattr(encoder, 'original_forward'): setattr(encoder, 'original_forward', encoder.forward)
|
|
if not hasattr(decoder, 'original_forward'): setattr(decoder, 'original_forward', decoder.forward)
|
|
|
|
|
|
|
|
|
|
|
|
fn = VAEHook(net=decoder if is_decoder else encoder, tile_size=tile_size // 8 if is_decoder else tile_size,
|
|
is_decoder=is_decoder, fast_decoder=fast, fast_encoder=fast,
|
|
color_fix=color_fix, to_gpu=comfy.model_management.vae_device().type != 'cpu')
|
|
if is_decoder:
|
|
decoder.forward = fn
|
|
else:
|
|
encoder.forward = fn
|
|
|
|
ret = (None,)
|
|
try:
|
|
with devices.without_autocast():
|
|
if not is_decoder:
|
|
ret = VAEEncode().encode(_vae, samples)
|
|
else:
|
|
ret = VAEDecode().decode(_vae, samples) if is_decoder else VAEEncode().encode(_vae, samples)
|
|
finally:
|
|
if isinstance(encoder.forward, VAEHook):
|
|
encoder.forward.net = None
|
|
encoder.forward = encoder.original_forward
|
|
if isinstance(decoder.forward, VAEHook):
|
|
decoder.forward.net = None
|
|
decoder.forward = decoder.original_forward
|
|
return ret
|
|
|
|
class VAEEncodeTiled_TiledDiffusion(TiledVAE):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
fast = True
|
|
tile_size = get_rcmd_enc_tsize()
|
|
return {"required": {"pixels": ("IMAGE", ),
|
|
"vae": ("VAE", ),
|
|
"tile_size": ("INT", {"default": tile_size, "min": 256, "max": 4096, "step": 16}),
|
|
"fast": ("BOOLEAN", {"default": fast}),
|
|
"color_fix": ("BOOLEAN", {"default": fast}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "process"
|
|
CATEGORY = "_for_testing"
|
|
|
|
def __init__(self):
|
|
self.is_decoder = False
|
|
super().__init__()
|
|
|
|
class VAEDecodeTiled_TiledDiffusion(TiledVAE):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
tile_size = get_rcmd_dec_tsize() * opt_f
|
|
return {"required": {"samples": ("LATENT", ),
|
|
"vae": ("VAE", ),
|
|
"tile_size": ("INT", {"default": tile_size, "min": 48*opt_f, "max": 4096, "step": 16}),
|
|
"fast": ("BOOLEAN", {"default": True}),
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "process"
|
|
CATEGORY = "_for_testing"
|
|
|
|
def __init__(self):
|
|
self.is_decoder = True
|
|
super().__init__()
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"VAEEncodeTiled_TiledDiffusion": VAEEncodeTiled_TiledDiffusion,
|
|
"VAEDecodeTiled_TiledDiffusion": VAEDecodeTiled_TiledDiffusion,
|
|
}
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"VAEEncodeTiled_TiledDiffusion": "Tiled VAE Encode",
|
|
"VAEDecodeTiled_TiledDiffusion": "Tiled VAE Decode",
|
|
}
|
|
|