Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,224 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
# UI-TARS 1.5-7B Model Setup Commands
|
5 |
+
|
6 |
+
This document contains all the commands executed to download, convert, and quantize the ByteDance-Seed/UI-TARS-1.5-7B model for use with Ollama.
|
7 |
+
|
8 |
+
## Prerequisites
|
9 |
+
|
10 |
+
### 1. Verify Ollama Installation
|
11 |
+
```bash
|
12 |
+
ollama --version
|
13 |
+
```
|
14 |
+
|
15 |
+
### 2. Install System Dependencies
|
16 |
+
```bash
|
17 |
+
# Install sentencepiece via Homebrew
|
18 |
+
brew install sentencepiece
|
19 |
+
|
20 |
+
# Install Python packages
|
21 |
+
pip3 install sentencepiece gguf protobuf huggingface_hub
|
22 |
+
```
|
23 |
+
|
24 |
+
## Step 1: Download the UI-TARS Model
|
25 |
+
|
26 |
+
### Create directory and download model
|
27 |
+
```bash
|
28 |
+
# Create directory for the model
|
29 |
+
mkdir -p /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b
|
30 |
+
|
31 |
+
# Change to the directory
|
32 |
+
cd /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b
|
33 |
+
|
34 |
+
# Download the complete model from HuggingFace
|
35 |
+
huggingface-cli download ByteDance-Seed/UI-TARS-1.5-7B --local-dir . --local-dir-use-symlinks False
|
36 |
+
|
37 |
+
# Verify download
|
38 |
+
ls -la
|
39 |
+
```
|
40 |
+
|
41 |
+
## Step 2: Setup llama.cpp for Conversion
|
42 |
+
|
43 |
+
### Clone and build llama.cpp
|
44 |
+
```bash
|
45 |
+
# Navigate to AI directory
|
46 |
+
cd /Users/qoneqt/Desktop/shubham/ai
|
47 |
+
|
48 |
+
# Clone llama.cpp repository
|
49 |
+
git clone https://github.com/ggerganov/llama.cpp.git
|
50 |
+
|
51 |
+
# Navigate to llama.cpp directory
|
52 |
+
cd llama.cpp
|
53 |
+
|
54 |
+
# Create build directory and configure with CMake
|
55 |
+
mkdir build
|
56 |
+
cd build
|
57 |
+
cmake ..
|
58 |
+
|
59 |
+
# Build the project (this will take a few minutes)
|
60 |
+
make -j$(sysctl -n hw.ncpu)
|
61 |
+
|
62 |
+
# Verify the quantize tool was built
|
63 |
+
ls -la bin/llama-quantize
|
64 |
+
```
|
65 |
+
|
66 |
+
## Step 3: Convert Safetensors to GGUF Format
|
67 |
+
|
68 |
+
### Create output directory and convert to F16 GGUF
|
69 |
+
```bash
|
70 |
+
# Create directory for GGUF files
|
71 |
+
mkdir -p /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf
|
72 |
+
|
73 |
+
# Navigate to llama.cpp directory
|
74 |
+
cd /Users/qoneqt/Desktop/shubham/ai/llama.cpp
|
75 |
+
|
76 |
+
# Convert safetensors to F16 GGUF (this takes ~5-10 minutes)
|
77 |
+
python convert_hf_to_gguf.py /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b \
|
78 |
+
--outfile /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf \
|
79 |
+
--outtype f16
|
80 |
+
|
81 |
+
# Check the F16 file size
|
82 |
+
ls -lh /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf
|
83 |
+
```
|
84 |
+
|
85 |
+
## Step 4: Quantize to Q4_K_M Format
|
86 |
+
|
87 |
+
### Quantize the F16 model to reduce size
|
88 |
+
```bash
|
89 |
+
# Navigate to the build directory
|
90 |
+
cd /Users/qoneqt/Desktop/shubham/ai/llama.cpp/build
|
91 |
+
|
92 |
+
# Quantize F16 to Q4_K_M (this takes ~1-2 minutes)
|
93 |
+
./bin/llama-quantize \
|
94 |
+
/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf \
|
95 |
+
/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-q4_k_m.gguf \
|
96 |
+
q4_k_m
|
97 |
+
|
98 |
+
# Check the quantized file size
|
99 |
+
ls -lh /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-q4_k_m.gguf
|
100 |
+
```
|
101 |
+
|
102 |
+
## Step 5: Create Modelfiles for Ollama
|
103 |
+
|
104 |
+
### Create Modelfile for F16 version
|
105 |
+
```bash
|
106 |
+
cd /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf
|
107 |
+
|
108 |
+
cat > Modelfile << 'EOF'
|
109 |
+
FROM ./ui-tars-1.5-7b-f16.gguf
|
110 |
+
|
111 |
+
TEMPLATE """<|im_start|>system
|
112 |
+
You are UI-TARS, an advanced AI assistant specialized in user interface automation and interaction. You can analyze screenshots, understand UI elements, and provide precise instructions for automating user interface tasks. When provided with a screenshot, analyze the visual elements and provide detailed, actionable guidance.
|
113 |
+
|
114 |
+
Key capabilities:
|
115 |
+
- Screenshot analysis and UI element detection
|
116 |
+
- Step-by-step automation instructions
|
117 |
+
- Precise coordinate identification for clicks and interactions
|
118 |
+
- Understanding of various UI frameworks and applications<|im_end|>
|
119 |
+
<|im_start|>user
|
120 |
+
{{ .Prompt }}<|im_end|>
|
121 |
+
<|im_start|>assistant
|
122 |
+
"""
|
123 |
+
|
124 |
+
PARAMETER stop "<|end|>"
|
125 |
+
PARAMETER stop "<|user|>"
|
126 |
+
PARAMETER stop "<|assistant|>"
|
127 |
+
PARAMETER temperature 0.7
|
128 |
+
PARAMETER top_p 0.9
|
129 |
+
EOF
|
130 |
+
```
|
131 |
+
|
132 |
+
### Create Modelfile for quantized version
|
133 |
+
```bash
|
134 |
+
cat > Modelfile-q4 << 'EOF'
|
135 |
+
FROM ./ui-tars-1.5-7b-q4_k_m.gguf
|
136 |
+
|
137 |
+
TEMPLATE """<|im_start|>system
|
138 |
+
You are UI-TARS, an advanced AI assistant specialized in user interface automation and interaction. You can analyze screenshots, understand UI elements, and provide precise instructions for automating user interface tasks. When provided with a screenshot, analyze the visual elements and provide detailed, actionable guidance.
|
139 |
+
|
140 |
+
Key capabilities:
|
141 |
+
- Screenshot analysis and UI element detection
|
142 |
+
- Step-by-step automation instructions
|
143 |
+
- Precise coordinate identification for clicks and interactions
|
144 |
+
- Understanding of various UI frameworks and applications<|im_end|>
|
145 |
+
<|im_start|>user
|
146 |
+
{{ .Prompt }}<|im_end|>
|
147 |
+
<|im_start|>assistant
|
148 |
+
"""
|
149 |
+
|
150 |
+
PARAMETER stop "<|end|>"
|
151 |
+
PARAMETER stop "<|user|>"
|
152 |
+
PARAMETER stop "<|assistant|>"
|
153 |
+
PARAMETER temperature 0.7
|
154 |
+
PARAMETER top_p 0.9
|
155 |
+
EOF
|
156 |
+
```
|
157 |
+
|
158 |
+
## Step 6: Create Models in Ollama
|
159 |
+
|
160 |
+
### Create the F16 model (high quality, larger size)
|
161 |
+
```bash
|
162 |
+
cd /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf
|
163 |
+
ollama create ui-tars:latest -f Modelfile
|
164 |
+
```
|
165 |
+
|
166 |
+
### Create the quantized model (recommended for daily use)
|
167 |
+
```bash
|
168 |
+
ollama create ui-tars:q4 -f Modelfile-q4
|
169 |
+
```
|
170 |
+
|
171 |
+
## Step 7: Verify Installation
|
172 |
+
|
173 |
+
### List all available models
|
174 |
+
```bash
|
175 |
+
ollama list
|
176 |
+
```
|
177 |
+
|
178 |
+
### Test the quantized model
|
179 |
+
```bash
|
180 |
+
ollama run ui-tars:q4 "Hello! Can you help me with UI automation tasks?"
|
181 |
+
```
|
182 |
+
|
183 |
+
### Test with an image (if you have one)
|
184 |
+
```bash
|
185 |
+
ollama run ui-tars:q4 "Analyze this screenshot and tell me what UI elements you can see" --image /path/to/your/screenshot.png
|
186 |
+
```
|
187 |
+
|
188 |
+
## File Sizes and Results
|
189 |
+
|
190 |
+
After completion, you should have:
|
191 |
+
|
192 |
+
- **Original model**: `/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b/` (~15GB, 19 files)
|
193 |
+
- **F16 GGUF**: `/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf` (~14.5GB)
|
194 |
+
- **Quantized GGUF**: `/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-q4_k_m.gguf` (~4.4GB)
|
195 |
+
- **Ollama models**:
|
196 |
+
- `ui-tars:latest` (~15GB in Ollama)
|
197 |
+
- `ui-tars:q4` (~4.7GB in Ollama) ⭐ **Recommended for daily use**
|
198 |
+
|
199 |
+
## Usage Tips
|
200 |
+
|
201 |
+
1. **Use the quantized model (`ui-tars:q4`)** for regular use - it's 69% smaller with minimal quality loss
|
202 |
+
2. **The model supports vision capabilities** - you can send screenshots for UI analysis
|
203 |
+
3. **Proper image formats**: PNG, JPEG, WebP are supported
|
204 |
+
4. **For UI automation**: Provide clear screenshots and specific questions about what you want to automate
|
205 |
+
|
206 |
+
## Cleanup (Optional)
|
207 |
+
|
208 |
+
If you want to save disk space after setup:
|
209 |
+
|
210 |
+
```bash
|
211 |
+
# Remove the original downloaded files (optional)
|
212 |
+
rm -rf /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b
|
213 |
+
|
214 |
+
# Remove the F16 GGUF if you only need the quantized version (optional)
|
215 |
+
rm /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf
|
216 |
+
|
217 |
+
# Remove llama.cpp if no longer needed (optional)
|
218 |
+
rm -rf /Users/qoneqt/Desktop/shubham/ai/llama.cpp
|
219 |
+
```
|
220 |
+
|
221 |
+
---
|
222 |
+
|
223 |
+
**Total Setup Time**: ~20-30 minutes (depending on download and conversion speeds)
|
224 |
+
**Final Model Size**: 4.7GB (quantized) vs 15GB (original) - 69% size reduction!
|