File size: 13,554 Bytes
61e6a6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from collections.abc import Generator
from dataclasses import dataclass
from typing import Optional
import numpy as np
class RequestValidationError(Exception):
pass
def _validate_that(condition: bool, msg: str):
if not condition:
raise RequestValidationError(msg)
def _validate_non_empty(data, msg: str):
_validate_that(data is not None and data.size > 0, msg)
def _validate_single_gt_0(data, msg: str):
_validate_non_empty(data, msg)
_validate_that(data.flatten()[0] > 0, msg)
def _single_value(data: Optional[np.ndarray]):
if data is None:
return None
return data.flatten()[0]
@dataclass
class Request:
text_input: np.ndarray = np.array([])
decoder_text_input: np.ndarray = None
max_tokens: np.ndarray = np.array([])
bad_words: Optional[np.ndarray] = None
stop_words: Optional[np.ndarray] = None
end_id: Optional[np.ndarray] = None
pad_id: Optional[np.ndarray] = None
top_k: Optional[np.ndarray] = None
top_p: Optional[np.ndarray] = None
temperature: Optional[np.ndarray] = None
length_penalty: Optional[np.ndarray] = None
repetition_penalty: Optional[np.ndarray] = None
min_length: Optional[np.ndarray] = None
return_log_probs: Optional[np.ndarray] = None
prompt_embedding_table: Optional[np.ndarray] = None
prompt_vocab_size: Optional[np.ndarray] = None
embedding_bias_words: Optional[np.ndarray] = None
embedding_bias_weights: Optional[np.ndarray] = None
num_draft_tokens: Optional[np.ndarray] = None
use_draft_logits: Optional[np.ndarray] = None
stream: Optional[np.ndarray] = None
beam_width: Optional[np.ndarray] = None
return_context_logits: Optional[np.ndarray] = None
return_generation_logits: Optional[np.ndarray] = None
random_seed: Optional[np.ndarray] = None
presence_penalty: Optional[np.ndarray] = None
frequency_penalty: Optional[np.ndarray] = None
def validate(self):
_validate_non_empty(self.text_input, "text_input is required")
_validate_single_gt_0(self.max_tokens,
"max_tokens must be a single value > 0")
num_draft_tokens = _single_value(self.num_draft_tokens)
stream = _single_value(self.stream)
_single_value(self.return_generation_logits)
context_logits = _single_value(self.return_context_logits)
if num_draft_tokens:
_validate_that(
not stream,
"streaming is not supported with speculative decoding")
_validate_that(
not context_logits,
"context logits are not supported with speculative decoding")
@dataclass
class DraftRequest:
draft_input_ids: Optional[np.ndarray] = None
draft_logits: Optional[np.ndarray] = None
@dataclass
class PreprocResponse:
input_ids: np.ndarray = np.array([])
decoder_input_ids: np.ndarray = None
input_lengths: np.ndarray = np.array([])
decoder_input_lengths: np.ndarray = None
bad_words_list: Optional[np.ndarray] = None
stop_words_list: Optional[np.ndarray] = None
embedding_bias: Optional[np.ndarray] = None
end_id: Optional[np.ndarray] = None
pad_id: Optional[np.ndarray] = None
@classmethod
def with_new_inputs(cls,
other,
input_ids: Optional[np.ndarray] = None,
input_lengths: Optional[np.ndarray] = None):
return cls(
input_ids=(input_ids
if input_ids is not None else other.input_ids),
input_lengths=(input_lengths if input_lengths is not None else
other.input_lengths),
decoder_input_ids=other.decoder_input_ids,
decoder_input_lengths=other.decoder_input_lengths,
bad_words_list=other.bad_words_list,
stop_words_list=other.stop_words_list,
end_id=other.end_id,
pad_id=other.pad_id,
)
@dataclass
class GenerationResponse:
output_ids: np.ndarray = np.array([])
sequence_length: np.ndarray = np.array([])
cum_log_probs: Optional[np.ndarray] = None
output_log_probs: Optional[np.ndarray] = None
context_logits: Optional[np.ndarray] = None
generation_logits: Optional[np.ndarray] = None
@dataclass
class Response:
text_output: np.ndarray = np.array([])
cum_log_probs: Optional[np.ndarray] = None
output_log_probs: Optional[np.ndarray] = None
context_logits: Optional[np.ndarray] = None
generation_logits: Optional[np.ndarray] = None
def __eq__(self, o) -> bool:
"""Just for testing"""
if not isinstance(o, Response):
return False
return (np.array_equal(self.text_output, o.text_output)
and np.array_equal(self.cum_log_probs, o.cum_log_probs)
and np.array_equal(self.output_log_probs, o.output_log_probs)
and np.array_equal(self.context_logits, o.context_logits) and
np.array_equal(self.generation_logits, o.generation_logits))
class Decoder:
def __init__(self, streaming=False, accumulate=False):
self._streaming = streaming
self._accumulate = accumulate
self._accumulated_tokens = None
def decode(self,
request: Request,
speculative_decoding=False) -> Generator[Response, None, None]:
preproc_response = self.preprocess(request)
if speculative_decoding:
for gen_response in self._spec_generate(preproc_response, request):
yield self.postprocess(gen_response)
else:
if not self._streaming:
gen_response = self._generate_non_streaming(
preproc_response, request)
yield self.postprocess(gen_response)
else:
for gen_response in self._generate(preproc_response, request):
yield self.postprocess(gen_response)
def encountered_stop_words(self, input_ids, stop_words_ids):
for stop_word_ids in stop_words_ids:
if np.array_equal(input_ids[-len(stop_word_ids):], stop_word_ids):
return True
return False
def _spec_generate(
self, preproc: PreprocResponse,
request: Request) -> Generator[GenerationResponse, None, None]:
prompt_input_ids: np.ndarray = preproc.input_ids[0]
input_ids: np.ndarray = prompt_input_ids
output_len: int = request.max_tokens[0][0]
last_input_ids: np.ndarray = None
draft_output_ids: np.ndarray = None
draft_logits: np.ndarray = None
target_response: GenerationResponse = None
cur_preproc = preproc
counter = 0
while True:
counter += 1
num_draft_tokens = min(
request.num_draft_tokens[0][0],
len(prompt_input_ids) + output_len - len(input_ids) - 1)
draft_request = None
if num_draft_tokens > 0:
draft_response: GenerationResponse = self._draft_generate_non_streaming(
cur_preproc, request, num_draft_tokens)
seq_len: int = draft_response.sequence_length[0][0]
# [1, beamWidth, outputLength] -> [outputLen]
draft_output_ids = draft_response.output_ids[0][0]
# [1, beamWidth, outputLength, vocabSizePadded] -> [outputLength, vocabSizePadded]
if request.use_draft_logits is not None and request.use_draft_logits[
0]:
if draft_response.generation_logits is not None:
draft_logits = draft_response.generation_logits[0][0]
input_draft_tokens = draft_output_ids[len(input_ids):seq_len]
draft_request = DraftRequest(
draft_input_ids=np.expand_dims(input_draft_tokens, 0))
if request.use_draft_logits is not None and request.use_draft_logits[
0]:
draft_request.draft_logits = np.expand_dims(
draft_logits[-len(input_draft_tokens):], 0)
else:
draft_request = DraftRequest()
target_response = self._generate_non_streaming(
cur_preproc, request, draft_request)
last_input_ids = input_ids
input_ids = target_response.output_ids[0][0]
cur_preproc = PreprocResponse.with_new_inputs(
cur_preproc, np.expand_dims(input_ids, 0),
np.array([[len(input_ids)]], dtype=np.int32))
# Evaluate criteria to stop generation loop.
# If we've hit or exceeded the max output length, should stop
length_stop = (len(input_ids) >=
len(prompt_input_ids) + output_len)
if length_stop:
break
# If draft and target have same outputs, should stop. Normally target should return 1 more token.
# If they are the same length, they should differ at the last token
target_draft_equal = draft_output_ids is not None and np.array_equal(
draft_output_ids, input_ids)
if target_draft_equal:
break
# If tokens no longer change, should stop, means we have hit early stopping
last_current_equal = np.array_equal(last_input_ids, input_ids)
if last_current_equal:
break
# Need to check if stop words was encountered
hit_stop_words = self.encountered_stop_words(
input_ids, preproc.stop_words_list[0])
if hit_stop_words:
break
yield target_response
def _draft_generate_non_streaming(
self, preproc: PreprocResponse, request: Request,
num_draft_tokens: int) -> GenerationResponse:
raise NotImplementedError()
def _generate(
self,
preproc: PreprocResponse,
request: Request,
draft_request: Optional[DraftRequest] = None
) -> Generator[GenerationResponse, None, None]:
raise NotImplementedError()
def _generate_non_streaming(
self,
preproc: PreprocResponse,
request: Request,
draft_request: Optional[DraftRequest] = None
) -> GenerationResponse:
raise NotImplementedError()
def postprocess(self, gen_response: GenerationResponse) -> Response:
if self._accumulate and self._streaming:
new_tokens: np.ndarray = gen_response.output_ids
if new_tokens.ndim != 3:
raise Exception("Expected output_ids tensor to have 3 dims.")
if new_tokens.shape[0] != 1:
raise Exception("Expected batch size of 1")
if new_tokens.shape[1] != 1:
raise Exception(
"Accumulation of tokens is only implemented for beam width = 1"
)
self._accumulated_tokens = new_tokens if (
self._accumulated_tokens is None) else np.concatenate(
(self._accumulated_tokens, new_tokens), axis=2)
sequence_lengths = np.array([[self._accumulated_tokens.shape[2]]],
dtype=np.int32)
return self._postprocess(self._accumulated_tokens,
sequence_lengths, gen_response)
else:
return self._postprocess(gen_response.output_ids, None,
gen_response)
def _postprocess(self, tokens: np.ndarray,
sequence_lengths: Optional[np.ndarray],
gen_response: GenerationResponse) -> Response:
raise NotImplementedError()
def preprocess(self, request: Request) -> PreprocResponse:
raise NotImplementedError()
def reset_decoder(self):
self._accumulated_tokens = None
|