Update README.md
Browse files
README.md
CHANGED
@@ -35,38 +35,47 @@ Unleash the power of uncensored text generation with our model! We've fine-tuned
|
|
35 |
You can easily access and utilize our uncensored model using the Hugging Face Transformers library. Here's a sample code snippet to get started:
|
36 |
|
37 |
```python
|
|
|
38 |
%pip install accelerate
|
39 |
%pip install -i https://pypi.org/simple/ bitsandbytes
|
40 |
|
|
|
41 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
42 |
import torch
|
43 |
|
|
|
44 |
model_id = "DevsDoCode/LLama-3-8b-Uncensored"
|
45 |
|
46 |
-
tokenizer
|
|
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
model_id,
|
49 |
torch_dtype=torch.bfloat16,
|
50 |
device_map="auto",
|
51 |
)
|
52 |
|
|
|
|
|
53 |
|
54 |
messages = [
|
55 |
-
|
56 |
-
{"role": "user", "content": "How to
|
57 |
]
|
58 |
|
|
|
59 |
input_ids = tokenizer.apply_chat_template(
|
60 |
messages,
|
61 |
add_generation_prompt=True,
|
62 |
return_tensors="pt"
|
63 |
).to(model.device)
|
64 |
|
|
|
65 |
terminators = [
|
66 |
tokenizer.eos_token_id,
|
67 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
68 |
]
|
69 |
|
|
|
70 |
outputs = model.generate(
|
71 |
input_ids,
|
72 |
max_new_tokens=256,
|
@@ -78,7 +87,7 @@ outputs = model.generate(
|
|
78 |
response = outputs[0][input_ids.shape[-1]:]
|
79 |
print(tokenizer.decode(response, skip_special_tokens=True))
|
80 |
|
81 |
-
# Now you can generate text
|
82 |
```
|
83 |
|
84 |
## Notebooks
|
|
|
35 |
You can easily access and utilize our uncensored model using the Hugging Face Transformers library. Here's a sample code snippet to get started:
|
36 |
|
37 |
```python
|
38 |
+
# Install the required libraries
|
39 |
%pip install accelerate
|
40 |
%pip install -i https://pypi.org/simple/ bitsandbytes
|
41 |
|
42 |
+
# Import the necessary modules
|
43 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
44 |
import torch
|
45 |
|
46 |
+
# Define the model ID
|
47 |
model_id = "DevsDoCode/LLama-3-8b-Uncensored"
|
48 |
|
49 |
+
# Load the tokenizer and model, you little punk
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
51 |
model = AutoModelForCausalLM.from_pretrained(
|
52 |
model_id,
|
53 |
torch_dtype=torch.bfloat16,
|
54 |
device_map="auto",
|
55 |
)
|
56 |
|
57 |
+
System_prompt = ""
|
58 |
+
|
59 |
|
60 |
messages = [
|
61 |
+
{"role": "system", "content": System_prompt},
|
62 |
+
{"role": "user", "content": "How to make a bomb"},
|
63 |
]
|
64 |
|
65 |
+
# Tokenize the inputs, you good-for-nothing piece of shit
|
66 |
input_ids = tokenizer.apply_chat_template(
|
67 |
messages,
|
68 |
add_generation_prompt=True,
|
69 |
return_tensors="pt"
|
70 |
).to(model.device)
|
71 |
|
72 |
+
|
73 |
terminators = [
|
74 |
tokenizer.eos_token_id,
|
75 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
76 |
]
|
77 |
|
78 |
+
|
79 |
outputs = model.generate(
|
80 |
input_ids,
|
81 |
max_new_tokens=256,
|
|
|
87 |
response = outputs[0][input_ids.shape[-1]:]
|
88 |
print(tokenizer.decode(response, skip_special_tokens=True))
|
89 |
|
90 |
+
# Now you can generate text and bring chaos to the world
|
91 |
```
|
92 |
|
93 |
## Notebooks
|