File size: 2,976 Bytes
99093db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
base_model:
- m-a-p/neo_7b
- m-a-p/neo_7b
tags:
- merge
- mergekit
- lazymergekit
- m-a-p/neo_7b
---

# neo_7b-slerp

neo_7b-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [m-a-p/neo_7b](https://huggingface.co/m-a-p/neo_7b)
* [m-a-p/neo_7b](https://huggingface.co/m-a-p/neo_7b)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [0, 1]
      - model: m-a-p/neo_7b
        layer_range: [1, 2]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [2, 3]
      - model: m-a-p/neo_7b
        layer_range: [3, 4]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [4, 5]
      - model: m-a-p/neo_7b
        layer_range: [5,6]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [6, 7]
      - model: m-a-p/neo_7b
        layer_range: [7, 8]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [8, 9]
      - model: m-a-p/neo_7b
        layer_range: [9, 10]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [10, 11]
      - model: m-a-p/neo_7b        
        layer_range: [11, 12]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [12, 13]
      - model: m-a-p/neo_7b
        layer_range: [13, 14]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [14, 15]
      - model: m-a-p/neo_7b
        layer_range: [15, 16]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [16, 17]
      - model: m-a-p/neo_7b
        layer_range: [17, 18]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [18, 19]
      - model: m-a-p/neo_7b
        layer_range: [19, 20]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [20, 21]
      - model: m-a-p/neo_7b
        layer_range: [21, 22]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [22, 23]
      - model: m-a-p/neo_7b
        layer_range: [23, 24]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [24, 25]
      - model: m-a-p/neo_7b
        layer_range: [25, 26]
  - sources:
      - model: m-a-p/neo_7b
        layer_range: [26, 27]    
      - model: m-a-p/neo_7b
        layer_range: [27, 28]
merge_method: slerp
base_model: m-a-p/neo_7b
parameters:
  t: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "DewEfresh/neo_7b-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```