Initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- rl-a2c-PandaReachDense-v2.zip +3 -0
- rl-a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- rl-a2c-PandaReachDense-v2/data +95 -0
- rl-a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- rl-a2c-PandaReachDense-v2/policy.pth +3 -0
- rl-a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- rl-a2c-PandaReachDense-v2/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.80 +/- 1.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5c076fa310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5c076f9880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682075737876506425, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4Mu6PhK7TLwngRw/4Mu6PhK7TLwngRw/4Mu6PhK7TLwngRw/4Mu6PhK7TLwngRw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIjoYP0ayDz9FIgm/avrpvVRSpL/hnpS/+gAvvyiWSb8Pz0g++1qOPciZVj+axoq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTvgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTvgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTvgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3648367 -0.01249577 0.6113457 ]\n [ 0.3648367 -0.01249577 0.6113457 ]\n [ 0.3648367 -0.01249577 0.6113457 ]\n [ 0.3648367 -0.01249577 0.6113457 ]]", "desired_goal": "[[ 0.59463704 0.561314 -0.53567916]\n [-0.11424716 -1.2837625 -1.1610986 ]\n [-0.68360865 -0.78744745 0.19610237]\n [ 0.06950947 0.838284 -0.27104646]]", "observation": "[[ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]\n [ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]\n [ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]\n [ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXciqvd6a2bzYiis97Gi8PRvE6z2ptnM+K0IBPR0jh7x2OZQ+BZZNPXHFED1sIX4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08338998 -0.0265631 0.04188046]\n [ 0.091997 0.11512014 0.23800148]\n [ 0.03155724 -0.01649624 0.2895009 ]\n [ 0.0501919 0.03534454 0.24817437]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEk92M6OPEMCUhpRSlIwBbJRLMowBdJRHQKaI55Rjz7N1fZQoaAZoCWgPQwjO+/84YQIPwJSGlFKUaBVLMmgWR0CmiKpEhJRPdX2UKGgGaAloD0MICyb+KOpME8CUhpRSlGgVSzJoFkdApohtYwIt2HV9lChoBmgJaA9DCBK/Yg0XGQTAlIaUUpRoFUsyaBZHQKaIMC17Y051fZQoaAZoCWgPQwiWIvlKIEUJwJSGlFKUaBVLMmgWR0CmidCzkZJkdX2UKGgGaAloD0MI5NnlWx8WC8CUhpRSlGgVSzJoFkdApomTbpNbknV9lChoBmgJaA9DCBjNyvYhzwbAlIaUUpRoFUsyaBZHQKaJVuR9w3p1fZQoaAZoCWgPQwhrgxPRry0UwJSGlFKUaBVLMmgWR0CmiRm3vx6OdX2UKGgGaAloD0MIDAIrhxa5AsCUhpRSlGgVSzJoFkdApoq0nZ00WXV9lChoBmgJaA9DCOjB3Vm7zQfAlIaUUpRoFUsyaBZHQKaKd1ZkkKN1fZQoaAZoCWgPQwgn+RG/Yi0FwJSGlFKUaBVLMmgWR0CmijpsoDxLdX2UKGgGaAloD0MIL+HQWzwcCcCUhpRSlGgVSzJoFkdApon9HSWqtHV9lChoBmgJaA9DCKAZxAd2rBLAlIaUUpRoFUsyaBZHQKaLkFpPAO91fZQoaAZoCWgPQwgSo+cWujIJwJSGlFKUaBVLMmgWR0Cmi1ML4N7TdX2UKGgGaAloD0MI8u7IWG2eC8CUhpRSlGgVSzJoFkdAposWIsRQJ3V9lChoBmgJaA9DCEhTPZl/1AXAlIaUUpRoFUsyaBZHQKaK2NnXd0t1fZQoaAZoCWgPQwgbutkfKFcBwJSGlFKUaBVLMmgWR0CmjHBFuvU0dX2UKGgGaAloD0MIouwt5XzxFMCUhpRSlGgVSzJoFkdApowy1Z1V53V9lChoBmgJaA9DCLPNjekJWxPAlIaUUpRoFUsyaBZHQKaL9f4REnd1fZQoaAZoCWgPQwjZe/FFe3wLwJSGlFKUaBVLMmgWR0Cmi7jSofjkdX2UKGgGaAloD0MI/BwfLc64BcCUhpRSlGgVSzJoFkdApo1gFs54nnV9lChoBmgJaA9DCMNHxJRIggXAlIaUUpRoFUsyaBZHQKaNIp4rz5J1fZQoaAZoCWgPQwjJrrSM1BsYwJSGlFKUaBVLMmgWR0CmjOW0AtFsdX2UKGgGaAloD0MIldbfEoBfDsCUhpRSlGgVSzJoFkdApoyokX1rZnV9lChoBmgJaA9DCDAOLh1zXgrAlIaUUpRoFUsyaBZHQKaOPx95Qgt1fZQoaAZoCWgPQwjqQUEpWrkQwJSGlFKUaBVLMmgWR0CmjgHa37UHdX2UKGgGaAloD0MIt5p1xvdlBsCUhpRSlGgVSzJoFkdApo3E5+6RQ3V9lChoBmgJaA9DCGh1cobi3hPAlIaUUpRoFUsyaBZHQKaNh6/IsAh1fZQoaAZoCWgPQwj0iTxJusYCwJSGlFKUaBVLMmgWR0Cmjyon8baRdX2UKGgGaAloD0MIDMufbwsWFMCUhpRSlGgVSzJoFkdApo7s1Muez3V9lChoBmgJaA9DCCWTUzvDFAjAlIaUUpRoFUsyaBZHQKaOr/YJ3Pl1fZQoaAZoCWgPQwjZQ/tYwY8EwJSGlFKUaBVLMmgWR0CmjnLOiWVvdX2UKGgGaAloD0MIYFYo0v1cD8CUhpRSlGgVSzJoFkdAppAWkLx7RnV9lChoBmgJaA9DCHlZEwt8ZQTAlIaUUpRoFUsyaBZHQKaP2Swnpjd1fZQoaAZoCWgPQwhDOdGuQnoVwJSGlFKUaBVLMmgWR0Cmj5xaX8fndX2UKGgGaAloD0MIIHpSJjU0CMCUhpRSlGgVSzJoFkdApo9fHggow3V9lChoBmgJaA9DCNDyPLg7SwrAlIaUUpRoFUsyaBZHQKaQ+KHfuTl1fZQoaAZoCWgPQwh4uYjvxIwFwJSGlFKUaBVLMmgWR0CmkLtHpbD/dX2UKGgGaAloD0MIYCNJEK7AAcCUhpRSlGgVSzJoFkdAppB+Zy+6AnV9lChoBmgJaA9DCMEdqFMenQjAlIaUUpRoFUsyaBZHQKaQQRkmQbN1fZQoaAZoCWgPQwhRTrSrkNIHwJSGlFKUaBVLMmgWR0CmkeCAMDwIdX2UKGgGaAloD0MIyqZc4V2uBsCUhpRSlGgVSzJoFkdAppGjImw7knV9lChoBmgJaA9DCBy3mJ8bChLAlIaUUpRoFUsyaBZHQKaRZnaFmFt1fZQoaAZoCWgPQwioOA68Wm4RwJSGlFKUaBVLMmgWR0CmkSlCCz1LdX2UKGgGaAloD0MI6Z0KuOeZB8CUhpRSlGgVSzJoFkdAppLFuUD+znV9lChoBmgJaA9DCBa/KaxU0AzAlIaUUpRoFUsyaBZHQKaSiHnlnyx1fZQoaAZoCWgPQwiMg0vHnEcRwJSGlFKUaBVLMmgWR0CmkkuP/7zkdX2UKGgGaAloD0MIvwrw3eYtDMCUhpRSlGgVSzJoFkdAppIObmU4aXV9lChoBmgJaA9DCGYyHM9nAAnAlIaUUpRoFUsyaBZHQKaTqpda+vh1fZQoaAZoCWgPQwi/tn76zxoPwJSGlFKUaBVLMmgWR0Cmk20jLSuydX2UKGgGaAloD0MIb6DAO/kUCMCUhpRSlGgVSzJoFkdAppMwTbnHN3V9lChoBmgJaA9DCK9gG/FktxbAlIaUUpRoFUsyaBZHQKaS8v+OwPl1fZQoaAZoCWgPQwg8E5okloQRwJSGlFKUaBVLMmgWR0CmlImbLEDRdX2UKGgGaAloD0MIOj3vxoKiFsCUhpRSlGgVSzJoFkdAppRMYO2AoXV9lChoBmgJaA9DCPH2IATkexHAlIaUUpRoFUsyaBZHQKaUD30wrUd1fZQoaAZoCWgPQwhORwA3i1cHwJSGlFKUaBVLMmgWR0Cmk9I7FKkEdX2UKGgGaAloD0MIW7bWFwnNGMCUhpRSlGgVSzJoFkdAppVpnvlU63V9lChoBmgJaA9DCMXkDTDzjRbAlIaUUpRoFUsyaBZHQKaVLGhEjPh1fZQoaAZoCWgPQwi37uapDvkJwJSGlFKUaBVLMmgWR0CmlO+w1R+CdX2UKGgGaAloD0MISu1FtB2TDsCUhpRSlGgVSzJoFkdAppSybKA8S3V9lChoBmgJaA9DCJyKVBhbSA7AlIaUUpRoFUsyaBZHQKaWS4KhL5B1fZQoaAZoCWgPQwihv9AjRm8NwJSGlFKUaBVLMmgWR0Cmlg4e1a4ddX2UKGgGaAloD0MITz49tmVgDMCUhpRSlGgVSzJoFkdAppXRKvmoznV9lChoBmgJaA9DCMCSq1j8ZgXAlIaUUpRoFUsyaBZHQKaVk+7lJYl1fZQoaAZoCWgPQwgo9PqT+LwLwJSGlFKUaBVLMmgWR0CmlydXtBv8dX2UKGgGaAloD0MIs34zMV3ICcCUhpRSlGgVSzJoFkdAppbp+YtxuXV9lChoBmgJaA9DCOvE5XgFYhDAlIaUUpRoFUsyaBZHQKaWrSHdoFp1fZQoaAZoCWgPQwh0DTM0njgTwJSGlFKUaBVLMmgWR0Cmlm/qxC6ZdX2UKGgGaAloD0MI4QfnU8cKEsCUhpRSlGgVSzJoFkdAppgSe5Fw1nV9lChoBmgJaA9DCO317o/3CgjAlIaUUpRoFUsyaBZHQKaX1RwZOzp1fZQoaAZoCWgPQwi0kIDR5Y0JwJSGlFKUaBVLMmgWR0Cml5g2Ifr9dX2UKGgGaAloD0MIgm+aPjsgA8CUhpRSlGgVSzJoFkdAppdbBCUornV9lChoBmgJaA9DCLITXoJTHw3AlIaUUpRoFUsyaBZHQKaY9EDQqqh1fZQoaAZoCWgPQwgZcmw9Q/gAwJSGlFKUaBVLMmgWR0CmmLbxd6cBdX2UKGgGaAloD0MIsMivH2LDBcCUhpRSlGgVSzJoFkdApph6DsdDIHV9lChoBmgJaA9DCA+22O2zKg/AlIaUUpRoFUsyaBZHQKaYPMURFql1fZQoaAZoCWgPQwiVumQcI5kDwJSGlFKUaBVLMmgWR0CmmfJFb3XadX2UKGgGaAloD0MIObnfoSgwCMCUhpRSlGgVSzJoFkdAppm1YlpoK3V9lChoBmgJaA9DCCfZ6nJKYAvAlIaUUpRoFUsyaBZHQKaZePfbblB1fZQoaAZoCWgPQwjCNXf0v5wMwJSGlFKUaBVLMmgWR0CmmTwsGxD9dX2UKGgGaAloD0MIiCr8Gd7MB8CUhpRSlGgVSzJoFkdApptVqk/KQ3V9lChoBmgJaA9DCMsSnWUWAQjAlIaUUpRoFUsyaBZHQKabGNmUW2x1fZQoaAZoCWgPQwjnyMovg7H+v5SGlFKUaBVLMmgWR0Cmmtyo4uK5dX2UKGgGaAloD0MITl5kAn5tBsCUhpRSlGgVSzJoFkdAppqgUN8VpXV9lChoBmgJaA9DCPMC7KNTNwLAlIaUUpRoFUsyaBZHQKacs2Hck+p1fZQoaAZoCWgPQwj4pX7eVKQNwJSGlFKUaBVLMmgWR0CmnHdTHbRGdX2UKGgGaAloD0MIcM6I0t6ABcCUhpRSlGgVSzJoFkdAppw7FqBVdXV9lChoBmgJaA9DCPnYXaCkYAjAlIaUUpRoFUsyaBZHQKab/nOB19x1fZQoaAZoCWgPQwg+WpwxzMkBwJSGlFKUaBVLMmgWR0CmnhyJ0nw5dX2UKGgGaAloD0MIWDfeHRnrCsCUhpRSlGgVSzJoFkdApp3f2h7E53V9lChoBmgJaA9DCBmPUglPiAPAlIaUUpRoFUsyaBZHQKado6hg3Lp1fZQoaAZoCWgPQwhhiJy+nn8VwJSGlFKUaBVLMmgWR0CmnWcAJb+tdX2UKGgGaAloD0MIxLRv7q9OEcCUhpRSlGgVSzJoFkdApp+URxtHhHV9lChoBmgJaA9DCLt9VpkpLQrAlIaUUpRoFUsyaBZHQKafV5yEL6V1fZQoaAZoCWgPQwgdPulEgukTwJSGlFKUaBVLMmgWR0Cmnxuy3Td+dX2UKGgGaAloD0MI08H6P4cZAcCUhpRSlGgVSzJoFkdApp7fVoYek3V9lChoBmgJaA9DCMe6uI0GUAPAlIaUUpRoFUsyaBZHQKahHBciW3V1fZQoaAZoCWgPQwgibk4lA+AJwJSGlFKUaBVLMmgWR0CmoN+R5kbxdX2UKGgGaAloD0MIEY5Z9iTQC8CUhpRSlGgVSzJoFkdApqCjk0aZQnV9lChoBmgJaA9DCMsPXOUJBAPAlIaUUpRoFUsyaBZHQKagZzeXRgJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (811 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.7998399418778717, "std_reward": 1.0244236848542574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-21T12:03:55.991048"}
|
rl-a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19f582fc6c86a1084bbc70c8b831adc495697382008c36106c6f00b557f5477a
|
3 |
+
size 108058
|
rl-a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
rl-a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5c076fa310>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5c076f9880>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682075737876506425,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4Mu6PhK7TLwngRw/4Mu6PhK7TLwngRw/4Mu6PhK7TLwngRw/4Mu6PhK7TLwngRw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIjoYP0ayDz9FIgm/avrpvVRSpL/hnpS/+gAvvyiWSb8Pz0g++1qOPciZVj+axoq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTvgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTvgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTvgy7o+ErtMvCeBHD/O/0I8zIUtu8YIgTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.3648367 -0.01249577 0.6113457 ]\n [ 0.3648367 -0.01249577 0.6113457 ]\n [ 0.3648367 -0.01249577 0.6113457 ]\n [ 0.3648367 -0.01249577 0.6113457 ]]",
|
38 |
+
"desired_goal": "[[ 0.59463704 0.561314 -0.53567916]\n [-0.11424716 -1.2837625 -1.1610986 ]\n [-0.68360865 -0.78744745 0.19610237]\n [ 0.06950947 0.838284 -0.27104646]]",
|
39 |
+
"observation": "[[ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]\n [ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]\n [ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]\n [ 0.3648367 -0.01249577 0.6113457 0.01190181 -0.00264775 0.00393781]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXciqvd6a2bzYiis97Gi8PRvE6z2ptnM+K0IBPR0jh7x2OZQ+BZZNPXHFED1sIX4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.08338998 -0.0265631 0.04188046]\n [ 0.091997 0.11512014 0.23800148]\n [ 0.03155724 -0.01649624 0.2895009 ]\n [ 0.0501919 0.03534454 0.24817437]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEk92M6OPEMCUhpRSlIwBbJRLMowBdJRHQKaI55Rjz7N1fZQoaAZoCWgPQwjO+/84YQIPwJSGlFKUaBVLMmgWR0CmiKpEhJRPdX2UKGgGaAloD0MICyb+KOpME8CUhpRSlGgVSzJoFkdApohtYwIt2HV9lChoBmgJaA9DCBK/Yg0XGQTAlIaUUpRoFUsyaBZHQKaIMC17Y051fZQoaAZoCWgPQwiWIvlKIEUJwJSGlFKUaBVLMmgWR0CmidCzkZJkdX2UKGgGaAloD0MI5NnlWx8WC8CUhpRSlGgVSzJoFkdApomTbpNbknV9lChoBmgJaA9DCBjNyvYhzwbAlIaUUpRoFUsyaBZHQKaJVuR9w3p1fZQoaAZoCWgPQwhrgxPRry0UwJSGlFKUaBVLMmgWR0CmiRm3vx6OdX2UKGgGaAloD0MIDAIrhxa5AsCUhpRSlGgVSzJoFkdApoq0nZ00WXV9lChoBmgJaA9DCOjB3Vm7zQfAlIaUUpRoFUsyaBZHQKaKd1ZkkKN1fZQoaAZoCWgPQwgn+RG/Yi0FwJSGlFKUaBVLMmgWR0CmijpsoDxLdX2UKGgGaAloD0MIL+HQWzwcCcCUhpRSlGgVSzJoFkdApon9HSWqtHV9lChoBmgJaA9DCKAZxAd2rBLAlIaUUpRoFUsyaBZHQKaLkFpPAO91fZQoaAZoCWgPQwgSo+cWujIJwJSGlFKUaBVLMmgWR0Cmi1ML4N7TdX2UKGgGaAloD0MI8u7IWG2eC8CUhpRSlGgVSzJoFkdAposWIsRQJ3V9lChoBmgJaA9DCEhTPZl/1AXAlIaUUpRoFUsyaBZHQKaK2NnXd0t1fZQoaAZoCWgPQwgbutkfKFcBwJSGlFKUaBVLMmgWR0CmjHBFuvU0dX2UKGgGaAloD0MIouwt5XzxFMCUhpRSlGgVSzJoFkdApowy1Z1V53V9lChoBmgJaA9DCLPNjekJWxPAlIaUUpRoFUsyaBZHQKaL9f4REnd1fZQoaAZoCWgPQwjZe/FFe3wLwJSGlFKUaBVLMmgWR0Cmi7jSofjkdX2UKGgGaAloD0MI/BwfLc64BcCUhpRSlGgVSzJoFkdApo1gFs54nnV9lChoBmgJaA9DCMNHxJRIggXAlIaUUpRoFUsyaBZHQKaNIp4rz5J1fZQoaAZoCWgPQwjJrrSM1BsYwJSGlFKUaBVLMmgWR0CmjOW0AtFsdX2UKGgGaAloD0MIldbfEoBfDsCUhpRSlGgVSzJoFkdApoyokX1rZnV9lChoBmgJaA9DCDAOLh1zXgrAlIaUUpRoFUsyaBZHQKaOPx95Qgt1fZQoaAZoCWgPQwjqQUEpWrkQwJSGlFKUaBVLMmgWR0CmjgHa37UHdX2UKGgGaAloD0MIt5p1xvdlBsCUhpRSlGgVSzJoFkdApo3E5+6RQ3V9lChoBmgJaA9DCGh1cobi3hPAlIaUUpRoFUsyaBZHQKaNh6/IsAh1fZQoaAZoCWgPQwj0iTxJusYCwJSGlFKUaBVLMmgWR0Cmjyon8baRdX2UKGgGaAloD0MIDMufbwsWFMCUhpRSlGgVSzJoFkdApo7s1Muez3V9lChoBmgJaA9DCCWTUzvDFAjAlIaUUpRoFUsyaBZHQKaOr/YJ3Pl1fZQoaAZoCWgPQwjZQ/tYwY8EwJSGlFKUaBVLMmgWR0CmjnLOiWVvdX2UKGgGaAloD0MIYFYo0v1cD8CUhpRSlGgVSzJoFkdAppAWkLx7RnV9lChoBmgJaA9DCHlZEwt8ZQTAlIaUUpRoFUsyaBZHQKaP2Swnpjd1fZQoaAZoCWgPQwhDOdGuQnoVwJSGlFKUaBVLMmgWR0Cmj5xaX8fndX2UKGgGaAloD0MIIHpSJjU0CMCUhpRSlGgVSzJoFkdApo9fHggow3V9lChoBmgJaA9DCNDyPLg7SwrAlIaUUpRoFUsyaBZHQKaQ+KHfuTl1fZQoaAZoCWgPQwh4uYjvxIwFwJSGlFKUaBVLMmgWR0CmkLtHpbD/dX2UKGgGaAloD0MIYCNJEK7AAcCUhpRSlGgVSzJoFkdAppB+Zy+6AnV9lChoBmgJaA9DCMEdqFMenQjAlIaUUpRoFUsyaBZHQKaQQRkmQbN1fZQoaAZoCWgPQwhRTrSrkNIHwJSGlFKUaBVLMmgWR0CmkeCAMDwIdX2UKGgGaAloD0MIyqZc4V2uBsCUhpRSlGgVSzJoFkdAppGjImw7knV9lChoBmgJaA9DCBy3mJ8bChLAlIaUUpRoFUsyaBZHQKaRZnaFmFt1fZQoaAZoCWgPQwioOA68Wm4RwJSGlFKUaBVLMmgWR0CmkSlCCz1LdX2UKGgGaAloD0MI6Z0KuOeZB8CUhpRSlGgVSzJoFkdAppLFuUD+znV9lChoBmgJaA9DCBa/KaxU0AzAlIaUUpRoFUsyaBZHQKaSiHnlnyx1fZQoaAZoCWgPQwiMg0vHnEcRwJSGlFKUaBVLMmgWR0CmkkuP/7zkdX2UKGgGaAloD0MIvwrw3eYtDMCUhpRSlGgVSzJoFkdAppIObmU4aXV9lChoBmgJaA9DCGYyHM9nAAnAlIaUUpRoFUsyaBZHQKaTqpda+vh1fZQoaAZoCWgPQwi/tn76zxoPwJSGlFKUaBVLMmgWR0Cmk20jLSuydX2UKGgGaAloD0MIb6DAO/kUCMCUhpRSlGgVSzJoFkdAppMwTbnHN3V9lChoBmgJaA9DCK9gG/FktxbAlIaUUpRoFUsyaBZHQKaS8v+OwPl1fZQoaAZoCWgPQwg8E5okloQRwJSGlFKUaBVLMmgWR0CmlImbLEDRdX2UKGgGaAloD0MIOj3vxoKiFsCUhpRSlGgVSzJoFkdAppRMYO2AoXV9lChoBmgJaA9DCPH2IATkexHAlIaUUpRoFUsyaBZHQKaUD30wrUd1fZQoaAZoCWgPQwhORwA3i1cHwJSGlFKUaBVLMmgWR0Cmk9I7FKkEdX2UKGgGaAloD0MIW7bWFwnNGMCUhpRSlGgVSzJoFkdAppVpnvlU63V9lChoBmgJaA9DCMXkDTDzjRbAlIaUUpRoFUsyaBZHQKaVLGhEjPh1fZQoaAZoCWgPQwi37uapDvkJwJSGlFKUaBVLMmgWR0CmlO+w1R+CdX2UKGgGaAloD0MISu1FtB2TDsCUhpRSlGgVSzJoFkdAppSybKA8S3V9lChoBmgJaA9DCJyKVBhbSA7AlIaUUpRoFUsyaBZHQKaWS4KhL5B1fZQoaAZoCWgPQwihv9AjRm8NwJSGlFKUaBVLMmgWR0Cmlg4e1a4ddX2UKGgGaAloD0MITz49tmVgDMCUhpRSlGgVSzJoFkdAppXRKvmoznV9lChoBmgJaA9DCMCSq1j8ZgXAlIaUUpRoFUsyaBZHQKaVk+7lJYl1fZQoaAZoCWgPQwgo9PqT+LwLwJSGlFKUaBVLMmgWR0CmlydXtBv8dX2UKGgGaAloD0MIs34zMV3ICcCUhpRSlGgVSzJoFkdAppbp+YtxuXV9lChoBmgJaA9DCOvE5XgFYhDAlIaUUpRoFUsyaBZHQKaWrSHdoFp1fZQoaAZoCWgPQwh0DTM0njgTwJSGlFKUaBVLMmgWR0Cmlm/qxC6ZdX2UKGgGaAloD0MI4QfnU8cKEsCUhpRSlGgVSzJoFkdAppgSe5Fw1nV9lChoBmgJaA9DCO317o/3CgjAlIaUUpRoFUsyaBZHQKaX1RwZOzp1fZQoaAZoCWgPQwi0kIDR5Y0JwJSGlFKUaBVLMmgWR0Cml5g2Ifr9dX2UKGgGaAloD0MIgm+aPjsgA8CUhpRSlGgVSzJoFkdAppdbBCUornV9lChoBmgJaA9DCLITXoJTHw3AlIaUUpRoFUsyaBZHQKaY9EDQqqh1fZQoaAZoCWgPQwgZcmw9Q/gAwJSGlFKUaBVLMmgWR0CmmLbxd6cBdX2UKGgGaAloD0MIsMivH2LDBcCUhpRSlGgVSzJoFkdApph6DsdDIHV9lChoBmgJaA9DCA+22O2zKg/AlIaUUpRoFUsyaBZHQKaYPMURFql1fZQoaAZoCWgPQwiVumQcI5kDwJSGlFKUaBVLMmgWR0CmmfJFb3XadX2UKGgGaAloD0MIObnfoSgwCMCUhpRSlGgVSzJoFkdAppm1YlpoK3V9lChoBmgJaA9DCCfZ6nJKYAvAlIaUUpRoFUsyaBZHQKaZePfbblB1fZQoaAZoCWgPQwjCNXf0v5wMwJSGlFKUaBVLMmgWR0CmmTwsGxD9dX2UKGgGaAloD0MIiCr8Gd7MB8CUhpRSlGgVSzJoFkdApptVqk/KQ3V9lChoBmgJaA9DCMsSnWUWAQjAlIaUUpRoFUsyaBZHQKabGNmUW2x1fZQoaAZoCWgPQwjnyMovg7H+v5SGlFKUaBVLMmgWR0Cmmtyo4uK5dX2UKGgGaAloD0MITl5kAn5tBsCUhpRSlGgVSzJoFkdAppqgUN8VpXV9lChoBmgJaA9DCPMC7KNTNwLAlIaUUpRoFUsyaBZHQKacs2Hck+p1fZQoaAZoCWgPQwj4pX7eVKQNwJSGlFKUaBVLMmgWR0CmnHdTHbRGdX2UKGgGaAloD0MIcM6I0t6ABcCUhpRSlGgVSzJoFkdAppw7FqBVdXV9lChoBmgJaA9DCPnYXaCkYAjAlIaUUpRoFUsyaBZHQKab/nOB19x1fZQoaAZoCWgPQwg+WpwxzMkBwJSGlFKUaBVLMmgWR0CmnhyJ0nw5dX2UKGgGaAloD0MIWDfeHRnrCsCUhpRSlGgVSzJoFkdApp3f2h7E53V9lChoBmgJaA9DCBmPUglPiAPAlIaUUpRoFUsyaBZHQKado6hg3Lp1fZQoaAZoCWgPQwhhiJy+nn8VwJSGlFKUaBVLMmgWR0CmnWcAJb+tdX2UKGgGaAloD0MIxLRv7q9OEcCUhpRSlGgVSzJoFkdApp+URxtHhHV9lChoBmgJaA9DCLt9VpkpLQrAlIaUUpRoFUsyaBZHQKafV5yEL6V1fZQoaAZoCWgPQwgdPulEgukTwJSGlFKUaBVLMmgWR0Cmnxuy3Td+dX2UKGgGaAloD0MI08H6P4cZAcCUhpRSlGgVSzJoFkdApp7fVoYek3V9lChoBmgJaA9DCMe6uI0GUAPAlIaUUpRoFUsyaBZHQKahHBciW3V1fZQoaAZoCWgPQwgibk4lA+AJwJSGlFKUaBVLMmgWR0CmoN+R5kbxdX2UKGgGaAloD0MIEY5Z9iTQC8CUhpRSlGgVSzJoFkdApqCjk0aZQnV9lChoBmgJaA9DCMsPXOUJBAPAlIaUUpRoFUsyaBZHQKagZzeXRgJ1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
rl-a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a2b1d970dd791507e79271c444cb6e4c680c6c4f67f9423a086c9a8595e4824
|
3 |
+
size 44734
|
rl-a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8372e4c530049d0f3a1d224e9f1d4e4f268c050def8259a52c881a1c4a6a4926
|
3 |
+
size 46014
|
rl-a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
rl-a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe5c9c9a9a393adeb12677665d0c0895d41c3680f92ac6344738e179e9ca7a6d
|
3 |
+
size 2381
|