{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f51b6710d40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682401449390470105, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB62vPlHLFr2Ly6M9B62vPlHLFr2Ly6M9B62vPlHLFr2Ly6M9B62vPlHLFr2Ly6M9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACWTDPz9NrL9LqUS+9bPOPk4Bzj8eas2/WxjYP68BPb6hA1i/MPW5PgDcmb8g7aU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHra8+UcsWvYvLoz1cQPA8INrVuktTDbwHra8+UcsWvYvLoz1cQPA8INrVuktTDbwHra8+UcsWvYvLoz1cQPA8INrVuktTDbwHra8+UcsWvYvLoz1cQPA8INrVuktTDbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.34311697 -0.03681499 0.07997807]\n [ 0.34311697 -0.03681499 0.07997807]\n [ 0.34311697 -0.03681499 0.07997807]\n [ 0.34311697 -0.03681499 0.07997807]]", "desired_goal": "[[ 1.5264903 -1.3461074 -0.19205205]\n [ 0.4037167 1.6094148 -1.6048009 ]\n [ 1.6882433 -0.18457673 -0.8438054 ]\n [ 0.36319876 -1.2020264 1.296299 ]]", "observation": "[[ 0.34311697 -0.03681499 0.07997807 0.02932756 -0.00163156 -0.00862582]\n [ 0.34311697 -0.03681499 0.07997807 0.02932756 -0.00163156 -0.00862582]\n [ 0.34311697 -0.03681499 0.07997807 0.02932756 -0.00163156 -0.00862582]\n [ 0.34311697 -0.03681499 0.07997807 0.02932756 -0.00163156 -0.00862582]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANgsRvHFhLr0ofYk+RcKHPXWfjj1XYgE+pgkyvSLPpb30hLw9CEtbvTiPvT1PagM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00885277 -0.0425734 0.268533 ]\n [ 0.06628851 0.06964008 0.1263517 ]\n [-0.04346623 -0.08096148 0.09205046]\n [-0.05353835 0.09255832 0.12833522]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU1kUdlG0IMCUhpRSlIwBbJRLMowBdJRHQL/ULsFt8/l1fZQoaAZoCWgPQwgwZktWRTgWwJSGlFKUaBVLMmgWR0C/1AStNi6QdX2UKGgGaAloD0MIscHCSZqvF8CUhpRSlGgVSzJoFkdAv9PcZP2wmnV9lChoBmgJaA9DCBg+IqZEQhTAlIaUUpRoFUsyaBZHQL/TseVcD8t1fZQoaAZoCWgPQwi6SQwCK+cewJSGlFKUaBVLMmgWR0C/1JrO7g89dX2UKGgGaAloD0MIUFWhgVj2EsCUhpRSlGgVSzJoFkdAv9RxIre67XV9lChoBmgJaA9DCC6qRUQx2RfAlIaUUpRoFUsyaBZHQL/USMUAT7F1fZQoaAZoCWgPQwhWKxN+qX8kwJSGlFKUaBVLMmgWR0C/1B5EhJRPdX2UKGgGaAloD0MIoYUEjC5vGsCUhpRSlGgVSzJoFkdAv9UFuwX67HV9lChoBmgJaA9DCHXHYptUVCbAlIaUUpRoFUsyaBZHQL/U25y2hIx1fZQoaAZoCWgPQwgZARWOILUbwJSGlFKUaBVLMmgWR0C/1LM3dbgTdX2UKGgGaAloD0MI7KS+LO0UFcCUhpRSlGgVSzJoFkdAv9SIwYcebXV9lChoBmgJaA9DCI/HDFTGLx7AlIaUUpRoFUsyaBZHQL/VdbVBlc11fZQoaAZoCWgPQwi8QEmBBSAfwJSGlFKUaBVLMmgWR0C/1UuoLofTdX2UKGgGaAloD0MIL4mzImpCEsCUhpRSlGgVSzJoFkdAv9UjMY/FBXV9lChoBmgJaA9DCDP8pxsooCjAlIaUUpRoFUsyaBZHQL/U+LXcxj91fZQoaAZoCWgPQwgyPPazWPobwJSGlFKUaBVLMmgWR0C/1efG+9J0dX2UKGgGaAloD0MImZoEb0h7I8CUhpRSlGgVSzJoFkdAv9W9q59Vm3V9lChoBmgJaA9DCMcsexLYPBbAlIaUUpRoFUsyaBZHQL/VlTr3TNN1fZQoaAZoCWgPQwhoJa34huINwJSGlFKUaBVLMmgWR0C/1WrAP/aQdX2UKGgGaAloD0MIh9uhYTHSIMCUhpRSlGgVSzJoFkdAv9ZVzU7SzHV9lChoBmgJaA9DCNicg2dCmyPAlIaUUpRoFUsyaBZHQL/WLBsyi251fZQoaAZoCWgPQwjqlEc3wooqwJSGlFKUaBVLMmgWR0C/1gPcSGrTdX2UKGgGaAloD0MI8MAAwofaJcCUhpRSlGgVSzJoFkdAv9XZYfW+XnV9lChoBmgJaA9DCKEwKNNo+iLAlIaUUpRoFUsyaBZHQL/Wv5rP+n91fZQoaAZoCWgPQwhsPUM4ZrkVwJSGlFKUaBVLMmgWR0C/1pV+EytWdX2UKGgGaAloD0MIMe4G0VqxH8CUhpRSlGgVSzJoFkdAv9ZtAhStNnV9lChoBmgJaA9DCCAIkKFjxx3AlIaUUpRoFUsyaBZHQL/WQpJf6XV1fZQoaAZoCWgPQwi1/wHWqj0gwJSGlFKUaBVLMmgWR0C/1yp8OTaCdX2UKGgGaAloD0MIGD4ipkRiEcCUhpRSlGgVSzJoFkdAv9cAZR8+inV9lChoBmgJaA9DCM/cQ8L3fizAlIaUUpRoFUsyaBZHQL/W1/DLr5Z1fZQoaAZoCWgPQwi4A3XKoxMjwJSGlFKUaBVLMmgWR0C/1q11nuiOdX2UKGgGaAloD0MI44xhTtCmIMCUhpRSlGgVSzJoFkdAv9e36sQumXV9lChoBmgJaA9DCCL+YUuPhh/AlIaUUpRoFUsyaBZHQL/XjiBoVVR1fZQoaAZoCWgPQwgllL4Qct4UwJSGlFKUaBVLMmgWR0C/12XZPEbYdX2UKGgGaAloD0MIuAa2SrDYEsCUhpRSlGgVSzJoFkdAv9c7g62fCnV9lChoBmgJaA9DCOAtkKD4cQjAlIaUUpRoFUsyaBZHQL/YYw4sEq51fZQoaAZoCWgPQwhio6zfTBwZwJSGlFKUaBVLMmgWR0C/2DlVPva2dX2UKGgGaAloD0MISzrKwWyCFMCUhpRSlGgVSzJoFkdAv9gROBUaQ3V9lChoBmgJaA9DCHWQ14NJCSfAlIaUUpRoFUsyaBZHQL/X5xk/bCd1fZQoaAZoCWgPQwgJ+3YSEX4ZwJSGlFKUaBVLMmgWR0C/2QmD6FdtdX2UKGgGaAloD0MIGM41zNAYHsCUhpRSlGgVSzJoFkdAv9jfnyNGVnV9lChoBmgJaA9DCFvQe2MI4CbAlIaUUpRoFUsyaBZHQL/Yt4YJmd11fZQoaAZoCWgPQwjFHAQdrVoewJSGlFKUaBVLMmgWR0C/2I1jqfOEdX2UKGgGaAloD0MIEw8om3LVHsCUhpRSlGgVSzJoFkdAv9m8OavzOHV9lChoBmgJaA9DCAAC1qpdYyzAlIaUUpRoFUsyaBZHQL/ZkqSHM2Z1fZQoaAZoCWgPQwjWAntMpLQRwJSGlFKUaBVLMmgWR0C/2WqPOpsHdX2UKGgGaAloD0MIVAJiEi4ED8CUhpRSlGgVSzJoFkdAv9lAUTL4e3V9lChoBmgJaA9DCEyqtpvgKxjAlIaUUpRoFUsyaBZHQL/acnL7oB91fZQoaAZoCWgPQwgYJ77aUawqwJSGlFKUaBVLMmgWR0C/2kjiCJ40dX2UKGgGaAloD0MI2A5G7BPQFMCUhpRSlGgVSzJoFkdAv9ogvDgqE3V9lChoBmgJaA9DCPoK0oxFMxjAlIaUUpRoFUsyaBZHQL/Z9nlnyup1fZQoaAZoCWgPQwioOuRmuJEfwJSGlFKUaBVLMmgWR0C/2yKOHWSVdX2UKGgGaAloD0MIXB5rRgbZIcCUhpRSlGgVSzJoFkdAv9r4vmHP/3V9lChoBmgJaA9DCDFe86rO2iHAlIaUUpRoFUsyaBZHQL/a0KOT7l91fZQoaAZoCWgPQwgX9UnusCEgwJSGlFKUaBVLMmgWR0C/2qZuZThpdX2UKGgGaAloD0MINwAbECG+HcCUhpRSlGgVSzJoFkdAv9u/AUL2H3V9lChoBmgJaA9DCM7/q44ckSDAlIaUUpRoFUsyaBZHQL/blPbwjMV1fZQoaAZoCWgPQwi8s3bbhYYewJSGlFKUaBVLMmgWR0C/22yFCb+cdX2UKGgGaAloD0MIRyHJrN4hFcCUhpRSlGgVSzJoFkdAv9tCDg62fHV9lChoBmgJaA9DCAT+8PPfIx7AlIaUUpRoFUsyaBZHQL/cLtq59Vp1fZQoaAZoCWgPQwj/JalMMdcYwJSGlFKUaBVLMmgWR0C/3AS8an76dX2UKGgGaAloD0MIf9qoTgeiJ8CUhpRSlGgVSzJoFkdAv9vcXJo0ynV9lChoBmgJaA9DCLNAu0OKkRzAlIaUUpRoFUsyaBZHQL/bsdjXnQp1fZQoaAZoCWgPQwhJ9DKK5UYawJSGlFKUaBVLMmgWR0C/3Jhk3CKrdX2UKGgGaAloD0MIeJrMeFuJH8CUhpRSlGgVSzJoFkdAv9xua4MF2XV9lChoBmgJaA9DCFMlyt5SrhTAlIaUUpRoFUsyaBZHQL/cRjdHlOp1fZQoaAZoCWgPQwhF9dbAVhkYwJSGlFKUaBVLMmgWR0C/3Bu7YkE+dX2UKGgGaAloD0MIDwwgfChxGsCUhpRSlGgVSzJoFkdAv90DVawD/3V9lChoBmgJaA9DCDm2niEc0w/AlIaUUpRoFUsyaBZHQL/c2TQ3PzF1fZQoaAZoCWgPQwh8Rbde0wMmwJSGlFKUaBVLMmgWR0C/3LDDO1OTdX2UKGgGaAloD0MIYJSgv9BLIcCUhpRSlGgVSzJoFkdAv9yGQyRB/3V9lChoBmgJaA9DCFdD4h5L/x/AlIaUUpRoFUsyaBZHQL/dd75VOsV1fZQoaAZoCWgPQwjQDyOER/sPwJSGlFKUaBVLMmgWR0C/3U3Tuv2XdX2UKGgGaAloD0MIUtSZe0i4HsCUhpRSlGgVSzJoFkdAv90lWeYlY3V9lChoBmgJaA9DCK9Cyk+q7SLAlIaUUpRoFUsyaBZHQL/c+tbs4T91fZQoaAZoCWgPQwg5fT1fszwTwJSGlFKUaBVLMmgWR0C/3fhlpXZHdX2UKGgGaAloD0MIaa1oc5zrIcCUhpRSlGgVSzJoFkdAv93OU8mrsHV9lChoBmgJaA9DCJJ1OLpKZxjAlIaUUpRoFUsyaBZHQL/dpeJ53Tx1fZQoaAZoCWgPQwhHx9XIrgQYwJSGlFKUaBVLMmgWR0C/3Xtz4k/sdX2UKGgGaAloD0MIf/s6cM7IHcCUhpRSlGgVSzJoFkdAv95rjU/fO3V9lChoBmgJaA9DCLr3cMlxdx/AlIaUUpRoFUsyaBZHQL/eQZM+NcZ1fZQoaAZoCWgPQwhqEyf3O6QTwJSGlFKUaBVLMmgWR0C/3hkZJkGzdX2UKGgGaAloD0MIZJC7CFM0FsCUhpRSlGgVSzJoFkdAv93ul2vB8HV9lChoBmgJaA9DCMajVMIT+h7AlIaUUpRoFUsyaBZHQL/e0rj5sTF1fZQoaAZoCWgPQwjuXBjpRf0bwJSGlFKUaBVLMmgWR0C/3qjm0VrRdX2UKGgGaAloD0MIrWu0HOhxI8CUhpRSlGgVSzJoFkdAv96ArkKeCnV9lChoBmgJaA9DCBAGnnsPhynAlIaUUpRoFUsyaBZHQL/eVmseXAx1fZQoaAZoCWgPQwhOQ1ThzxANwJSGlFKUaBVLMmgWR0C/3z+A3DNydX2UKGgGaAloD0MIvsCsUKSLFsCUhpRSlGgVSzJoFkdAv98VbLU1AXV9lChoBmgJaA9DCA5pVOBkuxrAlIaUUpRoFUsyaBZHQL/e7QiRnvl1fZQoaAZoCWgPQwhN2H4yxmcawJSGlFKUaBVLMmgWR0C/3sKfapPzdX2UKGgGaAloD0MInnqkwW1NG8CUhpRSlGgVSzJoFkdAv9+2lZX+2nV9lChoBmgJaA9DCNY73A4NGyPAlIaUUpRoFUsyaBZHQL/fjHaN+9d1fZQoaAZoCWgPQwh87gT7r1snwJSGlFKUaBVLMmgWR0C/32QFHJ9zdX2UKGgGaAloD0MIlx5N9WQeCsCUhpRSlGgVSzJoFkdAv985k9U0enV9lChoBmgJaA9DCM2rOqsFriPAlIaUUpRoFUsyaBZHQL/gJolD4QB1fZQoaAZoCWgPQwju0LAYdR0YwJSGlFKUaBVLMmgWR0C/3/xn3+MqdX2UKGgGaAloD0MIPBbbpKI5JMCUhpRSlGgVSzJoFkdAv9/T8sMAm3V9lChoBmgJaA9DCK99Ab1wZxTAlIaUUpRoFUsyaBZHQL/fqW+49X91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}