File size: 2,042 Bytes
87ecb77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ee54c
87ecb77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-base-ft-btb-ca-ec-cv-cy-en
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-base-ft-btb-ca-ec-cv-cy-en

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the DewiBrynJones/banc-trawsgrifiadau-bangor-clean train main, cymen-arfor/15awr train+dev+test main, wanasash/enwaucymraeg train+dev+test main, DewiBrynJones/commonvoice_18_0_cy_en train main dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7135
- Wer: 0.5089

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.7363        | 0.3260 | 1000 | 0.9845          | 0.6733 |
| 1.4155        | 0.6520 | 2000 | 0.8237          | 0.5717 |
| 1.3809        | 0.9780 | 3000 | 0.7566          | 0.5274 |
| 1.0882        | 1.3040 | 4000 | 0.7265          | 0.5286 |
| 1.0903        | 1.6300 | 5000 | 0.7135          | 0.5089 |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.1