File size: 1,959 Bytes
28a7e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7178cd0
28a7e27
7f756cd
 
28a7e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f756cd
28a7e27
 
 
 
7f756cd
 
 
 
 
 
28a7e27
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: DewiBrynJones/whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-cv-cy-train-all-plus-other-with-excluded-ft-cv-tts
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-cv-cy-train-all-plus-other-with-excluded-ft-cv-tts

This model is a fine-tuned version of [DewiBrynJones/whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded](https://huggingface.co/DewiBrynJones/whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded) on the DewiBrynJones/commonvoice_cy_tts train main dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2556
- Wer: 0.1934

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.23          | 0.4583 | 1000 | 0.2574          | 0.1992 |
| 0.1775        | 0.9166 | 2000 | 0.2527          | 0.2015 |
| 0.0978        | 1.3749 | 3000 | 0.2559          | 0.1951 |
| 0.0902        | 1.8332 | 4000 | 0.2556          | 0.1934 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1