File size: 1,801 Bytes
f22e855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf6760
 
 
f22e855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6586153
83e2da4
c47e5d9
7905909
f34de16
4092333
33fcc8c
baf6760
f22e855
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Deysi/mt5-small-sumarizacion-textos-bilingual
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Deysi/mt5-small-sumarizacion-textos-bilingual

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.1454
- Validation Loss: 3.3754
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.2282    | 4.6664          | 0     |
| 6.0978     | 3.8777          | 1     |
| 5.2791     | 3.6299          | 2     |
| 4.8386     | 3.5296          | 3     |
| 4.5569     | 3.4565          | 4     |
| 4.3616     | 3.4055          | 5     |
| 4.2154     | 3.3870          | 6     |
| 4.1454     | 3.3754          | 7     |


### Framework versions

- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.9.0
- Tokenizers 0.13.2