Dhika commited on
Commit
0612a3e
·
1 Parent(s): a710bf4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: raildefectfft2
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: Dhika--defectfft
19
+ split: validation
20
+ args: Dhika--defectfft
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.7485714285714286
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # raildefectfft2
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.2327
35
+ - Accuracy: 0.7486
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0002
55
+ - train_batch_size: 30
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 30
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 1.3922 | 0.67 | 10 | 1.1690 | 0.6114 |
67
+ | 0.8518 | 1.33 | 20 | 0.8874 | 0.6829 |
68
+ | 0.5386 | 2.0 | 30 | 0.7207 | 0.7543 |
69
+ | 0.3125 | 2.67 | 40 | 0.8383 | 0.7286 |
70
+ | 0.2264 | 3.33 | 50 | 0.8440 | 0.7429 |
71
+ | 0.1613 | 4.0 | 60 | 0.8516 | 0.7457 |
72
+ | 0.119 | 4.67 | 70 | 1.3625 | 0.6 |
73
+ | 0.0972 | 5.33 | 80 | 0.9110 | 0.7429 |
74
+ | 0.0844 | 6.0 | 90 | 0.8272 | 0.78 |
75
+ | 0.0725 | 6.67 | 100 | 0.8958 | 0.74 |
76
+ | 0.0708 | 7.33 | 110 | 1.0972 | 0.7371 |
77
+ | 0.041 | 8.0 | 120 | 1.0089 | 0.7629 |
78
+ | 0.0312 | 8.67 | 130 | 1.0348 | 0.7629 |
79
+ | 0.0401 | 9.33 | 140 | 1.2427 | 0.7257 |
80
+ | 0.0271 | 10.0 | 150 | 1.0154 | 0.7543 |
81
+ | 0.0328 | 10.67 | 160 | 1.0373 | 0.7714 |
82
+ | 0.023 | 11.33 | 170 | 1.0051 | 0.7686 |
83
+ | 0.0199 | 12.0 | 180 | 0.9775 | 0.7657 |
84
+ | 0.0189 | 12.67 | 190 | 1.0088 | 0.7657 |
85
+ | 0.0188 | 13.33 | 200 | 1.1904 | 0.7343 |
86
+ | 0.0167 | 14.0 | 210 | 1.2999 | 0.7286 |
87
+ | 0.0159 | 14.67 | 220 | 1.1326 | 0.7514 |
88
+ | 0.0145 | 15.33 | 230 | 1.1386 | 0.7543 |
89
+ | 0.015 | 16.0 | 240 | 1.1441 | 0.7543 |
90
+ | 0.0133 | 16.67 | 250 | 1.1544 | 0.7514 |
91
+ | 0.0132 | 17.33 | 260 | 1.1629 | 0.7514 |
92
+ | 0.0121 | 18.0 | 270 | 1.1708 | 0.7514 |
93
+ | 0.0121 | 18.67 | 280 | 1.1773 | 0.7514 |
94
+ | 0.0114 | 19.33 | 290 | 1.1831 | 0.7514 |
95
+ | 0.0111 | 20.0 | 300 | 1.1883 | 0.7514 |
96
+ | 0.011 | 20.67 | 310 | 1.1937 | 0.7514 |
97
+ | 0.0103 | 21.33 | 320 | 1.1993 | 0.7514 |
98
+ | 0.0103 | 22.0 | 330 | 1.2046 | 0.7514 |
99
+ | 0.0103 | 22.67 | 340 | 1.2089 | 0.7514 |
100
+ | 0.0096 | 23.33 | 350 | 1.2133 | 0.7514 |
101
+ | 0.0095 | 24.0 | 360 | 1.2171 | 0.7514 |
102
+ | 0.0096 | 24.67 | 370 | 1.2204 | 0.7514 |
103
+ | 0.0093 | 25.33 | 380 | 1.2235 | 0.7486 |
104
+ | 0.0091 | 26.0 | 390 | 1.2262 | 0.7486 |
105
+ | 0.0092 | 26.67 | 400 | 1.2280 | 0.7514 |
106
+ | 0.0089 | 27.33 | 410 | 1.2296 | 0.7514 |
107
+ | 0.0092 | 28.0 | 420 | 1.2310 | 0.7514 |
108
+ | 0.0089 | 28.67 | 430 | 1.2319 | 0.7486 |
109
+ | 0.0089 | 29.33 | 440 | 1.2325 | 0.7486 |
110
+ | 0.0088 | 30.0 | 450 | 1.2327 | 0.7486 |
111
+
112
+
113
+ ### Framework versions
114
+
115
+ - Transformers 4.30.2
116
+ - Pytorch 2.0.1+cu118
117
+ - Datasets 2.12.0
118
+ - Tokenizers 0.13.3