DiTo97 commited on
Commit
cd0ff7a
·
1 Parent(s): 5e404f1

Updated README with DIBCO metrics

Browse files
Files changed (1) hide show
  1. README.md +16 -12
README.md CHANGED
@@ -1,11 +1,13 @@
1
  ---
2
- license: other
3
  tags:
4
- - document-image-binarizationimage-segmentation
 
5
  - generated_from_trainer
6
  model-index:
7
  - name: binarization-segformer-b3
8
  results: []
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,17 +15,19 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # binarization-segformer-b3
15
 
16
- This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the None dataset.
17
- It achieves the following results on the evaluation set:
18
- - Loss: 0.1017
19
- - Fmeasure: 0.9776
20
- - Pfmeasure: 0.9531
21
- - Psnr: 14.5040
22
- - Drd: 5.3749
 
 
23
 
24
  ## Model description
25
 
26
- More information needed
27
 
28
  ## Intended uses & limitations
29
 
@@ -51,7 +55,7 @@ The following hyperparameters were used during training:
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Fmeasure | Pfmeasure | Psnr | Drd |
55
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:-------:|:--------:|
56
  | 0.6667 | 1.03 | 10 | 0.6683 | 0.7127 | 0.6831 | 4.8248 | 107.2894 |
57
  | 0.6371 | 2.05 | 20 | 0.6390 | 0.8173 | 0.7360 | 6.1079 | 69.7770 |
@@ -105,4 +109,4 @@ The following hyperparameters were used during training:
105
  - Transformers 4.27.4
106
  - Pytorch 2.0.0+cu118
107
  - Datasets 2.11.0
108
- - Tokenizers 0.13.3
 
1
  ---
2
+ license: openrail
3
  tags:
4
+ - document-image-binarization
5
+ - image-segmentation
6
  - generated_from_trainer
7
  model-index:
8
  - name: binarization-segformer-b3
9
  results: []
10
+ pipeline_tag: image-to-image
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
15
 
16
  # binarization-segformer-b3
17
 
18
+ This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the same ensemble of datasets as the [SauvolaNet work](https://arxiv.org/pdf/2105.05521.pdf). The ensemble is publicly available in the official [SauvolaNet repository](https://github.com/Leedeng/SauvolaNet#datasets).
19
+ It achieves the following results on the evaluation set on DIBCO metrics:
20
+ - loss: 0.1017
21
+ - F-measure: 0.9776
22
+ - probabilistic F-measure: 0.9531
23
+ - PSNR: 14.5040
24
+ - DRD: 5.3749
25
+
26
+ For more information on DIBCO metrics, see the [paper](https://ieeexplore.ieee.org/document/8270159) in which they were introduced.
27
 
28
  ## Model description
29
 
30
+ This model is part of on-going research on pure semantic segmentation models for document image binarization.
31
 
32
  ## Intended uses & limitations
33
 
 
55
 
56
  ### Training results
57
 
58
+ | training loss | epoch | step | validation loss | F-measure | probabilistic F-measure | PSNR | DRD |
59
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:-------:|:--------:|
60
  | 0.6667 | 1.03 | 10 | 0.6683 | 0.7127 | 0.6831 | 4.8248 | 107.2894 |
61
  | 0.6371 | 2.05 | 20 | 0.6390 | 0.8173 | 0.7360 | 6.1079 | 69.7770 |
 
109
  - Transformers 4.27.4
110
  - Pytorch 2.0.0+cu118
111
  - Datasets 2.11.0
112
+ - Tokenizers 0.13.3