Updated README with DIBCO metrics
Browse files
README.md
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
tags:
|
4 |
-
- document-image-
|
|
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
- name: binarization-segformer-b3
|
8 |
results: []
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -13,17 +15,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# binarization-segformer-b3
|
15 |
|
16 |
-
This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
|
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
-
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
@@ -51,7 +55,7 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
|
|
55 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:-------:|:--------:|
|
56 |
| 0.6667 | 1.03 | 10 | 0.6683 | 0.7127 | 0.6831 | 4.8248 | 107.2894 |
|
57 |
| 0.6371 | 2.05 | 20 | 0.6390 | 0.8173 | 0.7360 | 6.1079 | 69.7770 |
|
@@ -105,4 +109,4 @@ The following hyperparameters were used during training:
|
|
105 |
- Transformers 4.27.4
|
106 |
- Pytorch 2.0.0+cu118
|
107 |
- Datasets 2.11.0
|
108 |
-
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
+
license: openrail
|
3 |
tags:
|
4 |
+
- document-image-binarization
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: binarization-segformer-b3
|
9 |
results: []
|
10 |
+
pipeline_tag: image-to-image
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
15 |
|
16 |
# binarization-segformer-b3
|
17 |
|
18 |
+
This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on the same ensemble of datasets as the [SauvolaNet work](https://arxiv.org/pdf/2105.05521.pdf). The ensemble is publicly available in the official [SauvolaNet repository](https://github.com/Leedeng/SauvolaNet#datasets).
|
19 |
+
It achieves the following results on the evaluation set on DIBCO metrics:
|
20 |
+
- loss: 0.1017
|
21 |
+
- F-measure: 0.9776
|
22 |
+
- probabilistic F-measure: 0.9531
|
23 |
+
- PSNR: 14.5040
|
24 |
+
- DRD: 5.3749
|
25 |
+
|
26 |
+
For more information on DIBCO metrics, see the [paper](https://ieeexplore.ieee.org/document/8270159) in which they were introduced.
|
27 |
|
28 |
## Model description
|
29 |
|
30 |
+
This model is part of on-going research on pure semantic segmentation models for document image binarization.
|
31 |
|
32 |
## Intended uses & limitations
|
33 |
|
|
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| training loss | epoch | step | validation loss | F-measure | probabilistic F-measure | PSNR | DRD |
|
59 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:-------:|:--------:|
|
60 |
| 0.6667 | 1.03 | 10 | 0.6683 | 0.7127 | 0.6831 | 4.8248 | 107.2894 |
|
61 |
| 0.6371 | 2.05 | 20 | 0.6390 | 0.8173 | 0.7360 | 6.1079 | 69.7770 |
|
|
|
109 |
- Transformers 4.27.4
|
110 |
- Pytorch 2.0.0+cu118
|
111 |
- Datasets 2.11.0
|
112 |
+
- Tokenizers 0.13.3
|