File size: 4,684 Bytes
200a93e
 
 
 
2d59e33
 
200a93e
 
 
 
 
 
 
 
 
 
 
 
 
2d59e33
200a93e
b6db9d7
 
2d59e33
200a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6db9d7
200a93e
 
 
 
 
 
b6db9d7
200a93e
 
 
 
 
 
 
b6db9d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200a93e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- generator
model-index:
- name: swinv2-base-panorama-IQA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-base-panorama-IQA

This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the isiqa-2019-hf dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0312
- Srocc: 0.1132
- Lcc: 0.1583

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 10
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50.0

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Srocc   | Lcc     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
| No log        | 0.8571  | 3    | 0.3021          | -0.1668 | -0.1392 |
| No log        | 2.0     | 7    | 0.1286          | -0.1808 | -0.1347 |
| 0.2494        | 2.8571  | 10   | 0.0678          | -0.1784 | -0.1273 |
| 0.2494        | 4.0     | 14   | 0.1143          | -0.1625 | -0.1114 |
| 0.2494        | 4.8571  | 17   | 0.0686          | -0.1939 | -0.1152 |
| 0.069         | 6.0     | 21   | 0.0572          | -0.2063 | -0.1376 |
| 0.069         | 6.8571  | 24   | 0.0537          | -0.1965 | -0.1405 |
| 0.069         | 8.0     | 28   | 0.0671          | -0.1794 | -0.1289 |
| 0.0276        | 8.8571  | 31   | 0.0551          | -0.1443 | -0.1164 |
| 0.0276        | 10.0    | 35   | 0.0492          | -0.1110 | -0.0948 |
| 0.0276        | 10.8571 | 38   | 0.0465          | -0.0945 | -0.0767 |
| 0.0181        | 12.0    | 42   | 0.0449          | -0.0830 | -0.0464 |
| 0.0181        | 12.8571 | 45   | 0.0402          | -0.0659 | -0.0280 |
| 0.0181        | 14.0    | 49   | 0.0389          | -0.0411 | -0.0117 |
| 0.0128        | 14.8571 | 52   | 0.0380          | -0.0348 | -0.0055 |
| 0.0128        | 16.0    | 56   | 0.0371          | -0.0232 | 0.0088  |
| 0.0128        | 16.8571 | 59   | 0.0360          | 0.0048  | 0.0205  |
| 0.0112        | 18.0    | 63   | 0.0354          | 0.0128  | 0.0385  |
| 0.0112        | 18.8571 | 66   | 0.0352          | 0.0197  | 0.0509  |
| 0.0088        | 20.0    | 70   | 0.0346          | 0.0331  | 0.0670  |
| 0.0088        | 20.8571 | 73   | 0.0337          | 0.0412  | 0.0801  |
| 0.0088        | 22.0    | 77   | 0.0347          | 0.0396  | 0.0879  |
| 0.008         | 22.8571 | 80   | 0.0348          | 0.0512  | 0.0954  |
| 0.008         | 24.0    | 84   | 0.0339          | 0.0643  | 0.1071  |
| 0.008         | 24.8571 | 87   | 0.0332          | 0.0765  | 0.1143  |
| 0.0066        | 26.0    | 91   | 0.0334          | 0.0855  | 0.1240  |
| 0.0066        | 26.8571 | 94   | 0.0330          | 0.0938  | 0.1292  |
| 0.0066        | 28.0    | 98   | 0.0317          | 0.0997  | 0.1381  |
| 0.006         | 28.8571 | 101  | 0.0314          | 0.1087  | 0.1432  |
| 0.006         | 30.0    | 105  | 0.0317          | 0.1053  | 0.1446  |
| 0.006         | 30.8571 | 108  | 0.0317          | 0.0971  | 0.1465  |
| 0.0062        | 32.0    | 112  | 0.0315          | 0.1032  | 0.1496  |
| 0.0062        | 32.8571 | 115  | 0.0315          | 0.1032  | 0.1511  |
| 0.0062        | 34.0    | 119  | 0.0314          | 0.1032  | 0.1533  |
| 0.0057        | 34.8571 | 122  | 0.0314          | 0.1094  | 0.1543  |
| 0.0057        | 36.0    | 126  | 0.0313          | 0.1091  | 0.1558  |
| 0.0057        | 36.8571 | 129  | 0.0312          | 0.1132  | 0.1570  |
| 0.006         | 38.0    | 133  | 0.0312          | 0.1132  | 0.1577  |
| 0.006         | 38.8571 | 136  | 0.0312          | 0.1132  | 0.1581  |
| 0.0058        | 40.0    | 140  | 0.0312          | 0.1132  | 0.1583  |
| 0.0058        | 40.8571 | 143  | 0.0312          | 0.1132  | 0.1584  |
| 0.0058        | 42.0    | 147  | 0.0312          | 0.1132  | 0.1584  |
| 0.006         | 42.8571 | 150  | 0.0312          | 0.1132  | 0.1584  |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1