File size: 3,055 Bytes
0657c20 561fd3c 0657c20 561fd3c 0657c20 561fd3c 0657c20 491bbeb 0657c20 491bbeb 0657c20 491bbeb 0657c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- generator
model-index:
- name: swinv2-tiny-panorama-IQA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-panorama-IQA
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the isiqa-2019-hf dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0211
- Srocc: 0.0896
- Lcc: 0.2316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 10
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Srocc | Lcc |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|
| No log | 0.8571 | 3 | 0.1747 | 0.1087 | 0.1976 |
| No log | 2.0 | 7 | 0.0570 | 0.1042 | 0.1898 |
| 0.1599 | 2.8571 | 10 | 0.0320 | 0.1126 | 0.1686 |
| 0.1599 | 4.0 | 14 | 0.0511 | 0.0265 | 0.1235 |
| 0.1599 | 4.8571 | 17 | 0.0274 | -0.0004 | 0.1029 |
| 0.0602 | 6.0 | 21 | 0.0375 | -0.0406 | 0.0900 |
| 0.0602 | 6.8571 | 24 | 0.0306 | -0.0533 | 0.0830 |
| 0.0602 | 8.0 | 28 | 0.0255 | -0.0726 | 0.0714 |
| 0.029 | 8.8571 | 31 | 0.0247 | -0.0568 | 0.0734 |
| 0.029 | 10.0 | 35 | 0.0293 | -0.0429 | 0.0900 |
| 0.029 | 10.8571 | 38 | 0.0259 | -0.0317 | 0.0982 |
| 0.0199 | 12.0 | 42 | 0.0238 | -0.0073 | 0.1288 |
| 0.0199 | 12.8571 | 45 | 0.0243 | 0.0216 | 0.1594 |
| 0.0199 | 14.0 | 49 | 0.0259 | 0.0454 | 0.1810 |
| 0.0161 | 14.8571 | 52 | 0.0224 | 0.0568 | 0.1954 |
| 0.0161 | 16.0 | 56 | 0.0211 | 0.0896 | 0.2316 |
| 0.0161 | 16.8571 | 59 | 0.0223 | 0.1001 | 0.2544 |
| 0.0132 | 18.0 | 63 | 0.0217 | 0.0981 | 0.2681 |
| 0.0132 | 18.8571 | 66 | 0.0221 | 0.1155 | 0.2746 |
| 0.0103 | 20.0 | 70 | 0.0228 | 0.1230 | 0.2831 |
| 0.0103 | 20.8571 | 73 | 0.0245 | 0.1327 | 0.2944 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|