File size: 6,655 Bytes
0d27d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: mit
base_model: severinsimmler/xlm-roberta-longformer-base-16384
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: longformer_pos
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer_pos

This model is a fine-tuned version of [severinsimmler/xlm-roberta-longformer-base-16384](https://huggingface.co/severinsimmler/xlm-roberta-longformer-base-16384) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6453
- Precision: 0.5508
- Recall: 0.5803
- F1: 0.5651
- Accuracy: 0.8941

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.35  | 50   | 0.7424          | 0.0       | 0.0    | 0.0    | 0.7648   |
| No log        | 2.7   | 100  | 0.4849          | 0.0415    | 0.0388 | 0.0401 | 0.8160   |
| No log        | 4.05  | 150  | 0.3986          | 0.0902    | 0.1163 | 0.1016 | 0.8418   |
| No log        | 5.41  | 200  | 0.3393          | 0.1827    | 0.1880 | 0.1853 | 0.8675   |
| No log        | 6.76  | 250  | 0.3370          | 0.275     | 0.2132 | 0.2402 | 0.8788   |
| No log        | 8.11  | 300  | 0.2937          | 0.3605    | 0.5310 | 0.4295 | 0.8864   |
| No log        | 9.46  | 350  | 0.2793          | 0.4088    | 0.4302 | 0.4193 | 0.8997   |
| No log        | 10.81 | 400  | 0.2500          | 0.4457    | 0.5969 | 0.5104 | 0.9066   |
| No log        | 12.16 | 450  | 0.2894          | 0.5031    | 0.6221 | 0.5563 | 0.9107   |
| 0.3689        | 13.51 | 500  | 0.3678          | 0.5269    | 0.5116 | 0.5192 | 0.9036   |
| 0.3689        | 14.86 | 550  | 0.3156          | 0.5216    | 0.6085 | 0.5617 | 0.9100   |
| 0.3689        | 16.22 | 600  | 0.3824          | 0.5551    | 0.5756 | 0.5652 | 0.9115   |
| 0.3689        | 17.57 | 650  | 0.3347          | 0.4276    | 0.4981 | 0.4602 | 0.9075   |
| 0.3689        | 18.92 | 700  | 0.3705          | 0.4610    | 0.6880 | 0.5521 | 0.8920   |
| 0.3689        | 20.27 | 750  | 0.3276          | 0.5447    | 0.6492 | 0.5924 | 0.9100   |
| 0.3689        | 21.62 | 800  | 0.4603          | 0.5650    | 0.5562 | 0.5605 | 0.9107   |
| 0.3689        | 22.97 | 850  | 0.3142          | 0.5677    | 0.6260 | 0.5954 | 0.9177   |
| 0.3689        | 24.32 | 900  | 0.3887          | 0.5747    | 0.6260 | 0.5993 | 0.9164   |
| 0.3689        | 25.68 | 950  | 0.5906          | 0.4670    | 0.6860 | 0.5557 | 0.8789   |
| 0.0798        | 27.03 | 1000 | 0.5407          | 0.6218    | 0.5736 | 0.5968 | 0.8989   |
| 0.0798        | 28.38 | 1050 | 0.4645          | 0.5044    | 0.5504 | 0.5264 | 0.9051   |
| 0.0798        | 29.73 | 1100 | 0.3217          | 0.5107    | 0.6027 | 0.5529 | 0.9104   |
| 0.0798        | 31.08 | 1150 | 0.4471          | 0.5523    | 0.6647 | 0.6033 | 0.9055   |
| 0.0798        | 32.43 | 1200 | 0.4611          | 0.5029    | 0.6725 | 0.5755 | 0.8980   |
| 0.0798        | 33.78 | 1250 | 0.4495          | 0.5783    | 0.6085 | 0.5930 | 0.9155   |
| 0.0798        | 35.14 | 1300 | 0.5293          | 0.5727    | 0.6105 | 0.5910 | 0.9128   |
| 0.0798        | 36.49 | 1350 | 0.4453          | 0.5652    | 0.5795 | 0.5722 | 0.9100   |
| 0.0798        | 37.84 | 1400 | 0.3912          | 0.5988    | 0.5988 | 0.5988 | 0.9162   |
| 0.0798        | 39.19 | 1450 | 0.3862          | 0.5917    | 0.6066 | 0.5990 | 0.9182   |
| 0.0393        | 40.54 | 1500 | 0.4303          | 0.5337    | 0.6744 | 0.5959 | 0.9137   |
| 0.0393        | 41.89 | 1550 | 0.3846          | 0.5129    | 0.6550 | 0.5753 | 0.9119   |
| 0.0393        | 43.24 | 1600 | 0.5571          | 0.5735    | 0.6047 | 0.5887 | 0.9124   |
| 0.0393        | 44.59 | 1650 | 0.4528          | 0.5719    | 0.6395 | 0.6038 | 0.9182   |
| 0.0393        | 45.95 | 1700 | 0.5202          | 0.6037    | 0.6260 | 0.6147 | 0.9130   |
| 0.0393        | 47.3  | 1750 | 0.5163          | 0.5743    | 0.5019 | 0.5357 | 0.8990   |
| 0.0393        | 48.65 | 1800 | 0.3528          | 0.5771    | 0.6531 | 0.6127 | 0.9157   |
| 0.0393        | 50.0  | 1850 | 0.4441          | 0.5654    | 0.6531 | 0.6061 | 0.9155   |
| 0.0393        | 51.35 | 1900 | 0.4517          | 0.6262    | 0.6105 | 0.6183 | 0.9151   |
| 0.0393        | 52.7  | 1950 | 0.4142          | 0.5812    | 0.6105 | 0.5955 | 0.9142   |
| 0.0315        | 54.05 | 2000 | 0.4539          | 0.5694    | 0.6357 | 0.6007 | 0.9180   |
| 0.0315        | 55.41 | 2050 | 0.4912          | 0.4107    | 0.5795 | 0.4807 | 0.9097   |
| 0.0315        | 56.76 | 2100 | 0.4442          | 0.5514    | 0.5194 | 0.5349 | 0.9190   |
| 0.0315        | 58.11 | 2150 | 0.4871          | 0.5414    | 0.6337 | 0.5839 | 0.9074   |
| 0.0315        | 59.46 | 2200 | 0.6469          | 0.5937    | 0.5465 | 0.5691 | 0.9072   |
| 0.0315        | 60.81 | 2250 | 0.4975          | 0.6346    | 0.6395 | 0.6371 | 0.9167   |
| 0.0315        | 62.16 | 2300 | 0.4800          | 0.6060    | 0.6260 | 0.6158 | 0.9151   |
| 0.0315        | 63.51 | 2350 | 0.5273          | 0.6047    | 0.5988 | 0.6018 | 0.9137   |
| 0.0315        | 64.86 | 2400 | 0.4613          | 0.5794    | 0.6221 | 0.6    | 0.9145   |
| 0.0315        | 66.22 | 2450 | 0.4839          | 0.5996    | 0.6298 | 0.6144 | 0.9189   |
| 0.0287        | 67.57 | 2500 | 0.4725          | 0.4970    | 0.6415 | 0.5601 | 0.9020   |
| 0.0287        | 68.92 | 2550 | 0.5888          | 0.6614    | 0.5717 | 0.6133 | 0.8999   |
| 0.0287        | 70.27 | 2600 | 0.4525          | 0.6021    | 0.5601 | 0.5803 | 0.9086   |
| 0.0287        | 71.62 | 2650 | 0.4416          | 0.5743    | 0.6066 | 0.5900 | 0.9157   |
| 0.0287        | 72.97 | 2700 | 0.4290          | 0.5084    | 0.6473 | 0.5695 | 0.8974   |
| 0.0287        | 74.32 | 2750 | 0.5249          | 0.5778    | 0.5543 | 0.5658 | 0.9103   |
| 0.0287        | 75.68 | 2800 | 0.5481          | 0.6149    | 0.5601 | 0.5862 | 0.9042   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2