File size: 2,156 Bytes
c18d457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
base_model: csebuetnlp/banglabert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bangla-hatespeech-analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bangla-hatespeech-analysis
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4000
- Accuracy: 0.8694
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 0.3883 | 0.2700 | 1000 | 0.3539 | 0.8531 |
| 0.3848 | 0.5400 | 2000 | 0.3685 | 0.8531 |
| 0.3438 | 0.8099 | 3000 | 0.3294 | 0.8635 |
| 0.2659 | 1.0799 | 4000 | 0.3643 | 0.8605 |
| 0.2775 | 1.3499 | 5000 | 0.3422 | 0.8695 |
| 0.2956 | 1.6199 | 6000 | 0.3923 | 0.8535 |
| 0.2848 | 1.8898 | 7000 | 0.3431 | 0.8701 |
| 0.2263 | 2.1598 | 8000 | 0.3707 | 0.8729 |
| 0.1947 | 2.4298 | 9000 | 0.4239 | 0.8737 |
| 0.2111 | 2.6998 | 10000 | 0.3852 | 0.8701 |
| 0.1759 | 2.9698 | 11000 | 0.4000 | 0.8694 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|