--- language: - en license: other license_name: flux-1-dev-non-commercial-license license_link: LICENSE.md tags: - text-to-image - image-generation - flux --- `black-forest-labs/FLUX.1-dev` quantized to INT8 using Optimum Quanto. ```shell pip install diffusers optimum-quanto ``` ```python import json import torch import diffusers import transformers from optimum.quanto import requantize from safetensors.torch import load_file from huggingface_hub import hf_hub_download def load_quanto_transformer(repo_path): with open(hf_hub_download(repo_path, "transformer/quantization_map.json"), "r") as f: quantization_map = json.load(f) with torch.device("meta"): transformer = diffusers.FluxTransformer2DModel.from_config(hf_hub_download(repo_path, "transformer/config.json")).to(torch.bfloat16) state_dict = load_file(hf_hub_download(repo_path, "transformer/diffusion_pytorch_model.safetensors")) requantize(transformer, state_dict, quantization_map, device=torch.device("cpu")) return transformer def load_quanto_text_encoder_2(repo_path): with open(hf_hub_download(repo_path, "text_encoder_2/quantization_map.json"), "r") as f: quantization_map = json.load(f) with open(hf_hub_download(repo_path, "text_encoder_2/config.json")) as f: t5_config = transformers.T5Config(**json.load(f)) with torch.device("meta"): text_encoder_2 = transformers.T5EncoderModel(t5_config).to(torch.bfloat16) state_dict = load_file(hf_hub_download(repo_path, "text_encoder_2/model.safetensors")) requantize(text_encoder_2, state_dict, quantization_map, device=torch.device("cpu")) return text_encoder_2 pipe = diffusers.AutoPipelineForText2Image.from_pretrained("Disty0/FLUX.1-dev-qint8", transformer=None, text_encoder_2=None, torch_dtype=torch.bfloat16) pipe.transformer = load_quanto_transformer("Disty0/FLUX.1-dev-qint8") pipe.text_encoder_2 = load_quanto_text_encoder_2("Disty0/FLUX.1-dev-qint8") pipe = pipe.to("cuda", dtype=torch.bfloat16) prompt = "A cat holding a sign that says hello world" image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, num_inference_steps=50, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save("flux-dev.png") ```