Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -229.35 +/- 148.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f374608fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f374608feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f374608ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f374609c040>", "_build": "<function ActorCriticPolicy._build at 0x7f374609c0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f374609c160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f374609c1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f374609c280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f374609c310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f374609c3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f374609c430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f374609c4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3746098940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 20480, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685877469504454442, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJoPVLzxAbk/7m56vte4VT6wWh49Gs9dPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFqr9KmKqGWMAWyUS0CMAXSUR0AbgY/FBIFvdX2UKGgGR8B2p2YkVvdeaAdLa2gIR0AbyjpLVWjodX2UKGgGR8BsuakRBeHBaAdLQWgIR0Ab9Z3cHnlodX2UKGgGR8Bb9pULlV94aAdLU2gIR0AcLLhaTwDvdX2UKGgGR8BoFVtuUD+zaAdLRWgIR0AcWoCMglnidX2UKGgGR8B2hQbfgrH3aAdLYmgIR0Acm8f3evZAdX2UKGgGR8B5nRvS+g14aAdLoGgIR0AdBgZ0jkdWdX2UKGgGR8BUKT1f3N9qaAdLUGgIR0AdO02LpA2RdX2UKGgGR8BgZ1zr/sE8aAdLVGgIR0Adc0elsP8RdX2UKGgGR8Bik+BWgezVaAdLwGgIR0Ad9mAbyYoidX2UKGgGR8BvX93bEgnuaAdLeWgIR0AetKXfIjnndX2UKGgGR8BHcC/wiJO4aAdLSWgIR0Ae5tUGVzIWdX2UKGgGR8BLv7lA/s3RaAdLR2gIR0AfFwn6VMVUdX2UKGgGR8Bq3yS7oSteaAdLb2gIR0AfYz544ZMtdX2UKGgGR8B0nLb7CSA6aAdLdWgIR0Afsjlgc94edX2UKGgGR8Bfb7zCk43naAdLamgIR0Af+eyzHCGfdX2UKGgGR8B1bC8cuJ1raAdLgWgIR0AgJ987ZFoddX2UKGgGR8BiucXSBshxaAdLZWgIR0AgScTakAPvdX2UKGgGR8BlOPS4OMESaAdLmGgIR0AgfgOz6ab4dX2UKGgGR8By7YGOdXkpaAdLbWgIR0Ag2NQTEit8dX2UKGgGR8BT4W8IzFdcaAdLyGgIR0AhHf8/D+BIdX2UKGgGR8BkhEg+yJKraAdLlGgIR0AhUF8ohIOIdX2UKGgGR8BXRbdN34bkaAdLW2gIR0AhbyBkI5YHdX2UKGgGR8BgeDLfUF0QaAdLVWgIR0Ahi7tAs053dX2UKGgGR8BwRVHskY4yaAdLY2gIR0AhrKbrkbPydX2UKGgGR8BxAd9oexOdaAdLYGgIR0AhzJ5mh/RWdX2UKGgGR8BmPKM98qnWaAdLnGgIR0AiANUfgaWHdX2UKGgGR8Bg3RM8HObBaAdLrWgIR0AicNTcZccEdX2UKGgGR8BTbos/Y8MeaAdLhGgIR0AinolD4QBgdX2UKGgGR8BkLxvWH1vmaAdLeGgIR0AixoouwosqdX2UKGgGR8ByP1m4AjptaAdLamgIR0Ai6lByCFsYdX2UKGgGR8B5ZHPw/gR9aAdL0GgIR0AjL/NJOFg2dX2UKGgGR8BtR6vovBacaAdLaWgIR0AjUy3Td+G5dX2UKGgGR8BzyA47zTWoaAdLvWgIR0Ajkkyk9ECvdX2UKGgGR8Bx6knqmj0uaAdLfGgIR0Aju6T4cm0FdX2UKGgGR8BWZnNX5nDjaAdLcWgIR0AkF3+uNgjRdX2UKGgGR8BVF4sAeaKDaAdLrmgIR0AkUeS0Sh8IdX2UKGgGR8BnxU6/7BO6aAdLfmgIR0Ake3uuzQeFdX2UKGgGR8B/JU45tFa0aAdLmGgIR0Akrhc7hegMdX2UKGgGR8CANRQiRnvlaAdLe2gIR0Ak17Lt/nW8dX2UKGgGR8BnrgIfKZDzaAdLpGgIR0AlDu/Dcdo4dX2UKGgGR8BbgPnbItDlaAdLcmgIR0AlNO+qR2bHdX2UKGgGR8AyqSvC/GlzaAdLTmgIR0Alhjfek56udX2UKGgGR8BbC+GsV+I/aAdLxGgIR0AlyIVuaWondX2UKGgGR8Bziq98JD3NaAdLa2gIR0Al7Cu2Zy+6dX2UKGgGR8By9IfwI+nqaAdLYGgIR0AmDJ04iosJdX2UKGgGR8BsxlSKm8/VaAdLZGgIR0AmLaIvalDXdX2UKGgGR8BpzPKW9lEraAdLeGgIR0AmVUx20Re1dX2UKGgGR8B5I5RfnfVJaAdLcWgIR0AmeqmTC+DfdX2UKGgGR8Bl3dFUhmoSaAdLd2gIR0Amog5BC2MLdX2UKGgGR8BqfZ2ll9SdaAdLjmgIR0Am0bc45tFbdX2UKGgGR8BmzrD2rXDnaAdLk2gIR0AnPAC4jKPodX2UKGgGR8BTcIr4FiazaAdLcWgIR0AnYnAIppevdX2UKGgGR8BrCcK/mDDkaAdLbGgIR0AnhqQiiZfEdX2UKGgGR8BjekQTVUdaaAdLoGgIR0AnvDiOvMbFdX2UKGgGR8BrvIh2W6bwaAdLfWgIR0An5dOZb6gvdX2UKGgGR8Ai+eCkGiYcaAdLamgIR0AoCW2w3YL9dX2UKGgGR8B3QPsjVx0daAdLg2gIR0AoNNu+AVfvdX2UKGgGR8Bw6XB+F10UaAdLY2gIR0AoVcry1/lRdX2UKGgGR8BxDxlyzXz2aAdLXGgIR0Aoqa3I+4b0dX2UKGgGR8BwjB0ihWYGaAdLs2gIR0Ao5qiXY150dX2UKGgGR8B6um+AVfu1aAdLi2gIR0ApFQ4S6DoRdX2UKGgGR8Bmae18b70naAdLcWgIR0ApO+SKWLP2dX2UKGgGR8Asq5bQkX1raAdLbmgIR0ApYflIVdondX2UKGgGR8BVg+P3i704aAdLxGgIR0Apo++M6zVudX2UKGgGR8Bs/CMDOkckaAdLXGgIR0ApwpiI+GGmdX2UKGgGR8CDUU/A0sOHaAdLxmgIR0AqOq+8Gs3idX2UKGgGR8ByXwYekpI+aAdNDAFoCEdAKpYI0IkZ8HV9lChoBkdAIzfyf+S8rmgHS2loCEdAKrlFUhmoSHV9lChoBkfANXeinHeaa2gHS29oCEdAKt8NYr8R+XV9lChoBkfAd+26cy31BmgHS6toCEdAKxicPOIInnV9lChoBkfAdrMRHPNVzmgHS3xoCEdAK0JC0F8ohXV9lChoBkfAd8wMyJsO5WgHS9FoCEdAK76yKNyYHHV9lChoBkfAf+NX1J17pmgHS65oCEdAK/nXumaYu3V9lChoBkfAb6E593KSxWgHS45oCEdALClNUOuq3nV9lChoBkfAXjgzyjHn2mgHS3RoCEdALE/ixVyWA3V9lChoBkfAcKhyv9tMwmgHS5RoCEdALIHzYmLLp3V9lChoBkfAdDCr433pOmgHS4doCEdALK7QC0WuYHV9lChoBkfAaMsm7aqS5mgHS2doCEdALNES26TW5HV9lChoBkfAZiHhb4agmWgHS3hoCEdALPlbu+h4+3V9lChoBkfAfN9kLhJiAmgHS5JoCEdALWD7655JLHV9lChoBkfAa9E7Dl5nlGgHS2NoCEdALYKYqoZQ53V9lChoBkfAWT++TNdJKGgHS7BoCEdALb23z+WGAXV9lChoBkfAcjnevIOpbWgHS4xoCEdALexywOe8PHV9lChoBkfAXsygGr0aqGgHS59oCEdALiFh5Pdl/nV9lChoBkfAe15xk/bCamgHS4JoCEdALkyOinHeanV9lChoBkfAckMNPxhDxGgHS8hoCEdALo9rftQbdnV9lChoBkfAcRc5iVjZtmgHS5FoCEdALvZPl+3H73V9lChoBkfAbH+wM6RyO2gHS3NoCEdALx2MCLdepnV9lChoBkfAVsWKMvRJE2gHS21oCEdAL0JTl1bJOnV9lChoBkfAYllM4cWCVmgHS5NoCEdAL3O2qkuYhXV9lChoBkfAb0rB7/n4f2gHS3xoCEdAL51YyO7xu3V9lChoBkfATfvnp0OmSGgHS4doCEdAL8p+c6Nly3V9lChoBkfAYWjYpUgjhWgHS5ZoCEdAL/yXMQmNR3V9lChoBkfAYIABgeA/cGgHS+loCEdAMEAKBun/DXV9lChoBkfAV2j1g6U7jmgHS99oCEdAMGXtnf2saXV9lChoBkfAays0sOG0u2gHS+ZoCEdAMIzmr8zhxnV9lChoBkfAWVNIy0rsjWgHS9FoCEdAMLAAp8WsR3V9lChoBkfAcmdW6shgV2gHS5poCEdAMMmPLgXMyXV9lChoBkfAbapDUExIrmgHS3loCEdAMN3JxNqQBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.92, "gae_lambda": 0.8, "ent_coef": 0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 2, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-72-generic-x86_64-with-glibc2.31 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1.post201", "GPU Enabled": "True", "Numpy": "1.23.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:352862131b0fffac1f61c0431c313ee4fec2897c1368ecd0b00b6cc05c1a988e
|
3 |
+
size 146045
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f374608fe20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f374608feb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f374608ff40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f374609c040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f374609c0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f374609c160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f374609c1f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f374609c280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f374609c310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f374609c3a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f374609c430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f374609c4c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3746098940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 20480,
|
25 |
+
"_total_timesteps": 20000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685877469504454442,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJoPVLzxAbk/7m56vte4VT6wWh49Gs9dPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.02400000000000002,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFqr9KmKqGWMAWyUS0CMAXSUR0AbgY/FBIFvdX2UKGgGR8B2p2YkVvdeaAdLa2gIR0AbyjpLVWjodX2UKGgGR8BsuakRBeHBaAdLQWgIR0Ab9Z3cHnlodX2UKGgGR8Bb9pULlV94aAdLU2gIR0AcLLhaTwDvdX2UKGgGR8BoFVtuUD+zaAdLRWgIR0AcWoCMglnidX2UKGgGR8B2hQbfgrH3aAdLYmgIR0Acm8f3evZAdX2UKGgGR8B5nRvS+g14aAdLoGgIR0AdBgZ0jkdWdX2UKGgGR8BUKT1f3N9qaAdLUGgIR0AdO02LpA2RdX2UKGgGR8BgZ1zr/sE8aAdLVGgIR0Adc0elsP8RdX2UKGgGR8Bik+BWgezVaAdLwGgIR0Ad9mAbyYoidX2UKGgGR8BvX93bEgnuaAdLeWgIR0AetKXfIjnndX2UKGgGR8BHcC/wiJO4aAdLSWgIR0Ae5tUGVzIWdX2UKGgGR8BLv7lA/s3RaAdLR2gIR0AfFwn6VMVUdX2UKGgGR8Bq3yS7oSteaAdLb2gIR0AfYz544ZMtdX2UKGgGR8B0nLb7CSA6aAdLdWgIR0Afsjlgc94edX2UKGgGR8Bfb7zCk43naAdLamgIR0Af+eyzHCGfdX2UKGgGR8B1bC8cuJ1raAdLgWgIR0AgJ987ZFoddX2UKGgGR8BiucXSBshxaAdLZWgIR0AgScTakAPvdX2UKGgGR8BlOPS4OMESaAdLmGgIR0AgfgOz6ab4dX2UKGgGR8By7YGOdXkpaAdLbWgIR0Ag2NQTEit8dX2UKGgGR8BT4W8IzFdcaAdLyGgIR0AhHf8/D+BIdX2UKGgGR8BkhEg+yJKraAdLlGgIR0AhUF8ohIOIdX2UKGgGR8BXRbdN34bkaAdLW2gIR0AhbyBkI5YHdX2UKGgGR8BgeDLfUF0QaAdLVWgIR0Ahi7tAs053dX2UKGgGR8BwRVHskY4yaAdLY2gIR0AhrKbrkbPydX2UKGgGR8BxAd9oexOdaAdLYGgIR0AhzJ5mh/RWdX2UKGgGR8BmPKM98qnWaAdLnGgIR0AiANUfgaWHdX2UKGgGR8Bg3RM8HObBaAdLrWgIR0AicNTcZccEdX2UKGgGR8BTbos/Y8MeaAdLhGgIR0AinolD4QBgdX2UKGgGR8BkLxvWH1vmaAdLeGgIR0AixoouwosqdX2UKGgGR8ByP1m4AjptaAdLamgIR0Ai6lByCFsYdX2UKGgGR8B5ZHPw/gR9aAdL0GgIR0AjL/NJOFg2dX2UKGgGR8BtR6vovBacaAdLaWgIR0AjUy3Td+G5dX2UKGgGR8BzyA47zTWoaAdLvWgIR0Ajkkyk9ECvdX2UKGgGR8Bx6knqmj0uaAdLfGgIR0Aju6T4cm0FdX2UKGgGR8BWZnNX5nDjaAdLcWgIR0AkF3+uNgjRdX2UKGgGR8BVF4sAeaKDaAdLrmgIR0AkUeS0Sh8IdX2UKGgGR8BnxU6/7BO6aAdLfmgIR0Ake3uuzQeFdX2UKGgGR8B/JU45tFa0aAdLmGgIR0Akrhc7hegMdX2UKGgGR8CANRQiRnvlaAdLe2gIR0Ak17Lt/nW8dX2UKGgGR8BnrgIfKZDzaAdLpGgIR0AlDu/Dcdo4dX2UKGgGR8BbgPnbItDlaAdLcmgIR0AlNO+qR2bHdX2UKGgGR8AyqSvC/GlzaAdLTmgIR0Alhjfek56udX2UKGgGR8BbC+GsV+I/aAdLxGgIR0AlyIVuaWondX2UKGgGR8Bziq98JD3NaAdLa2gIR0Al7Cu2Zy+6dX2UKGgGR8By9IfwI+nqaAdLYGgIR0AmDJ04iosJdX2UKGgGR8BsxlSKm8/VaAdLZGgIR0AmLaIvalDXdX2UKGgGR8BpzPKW9lEraAdLeGgIR0AmVUx20Re1dX2UKGgGR8B5I5RfnfVJaAdLcWgIR0AmeqmTC+DfdX2UKGgGR8Bl3dFUhmoSaAdLd2gIR0Amog5BC2MLdX2UKGgGR8BqfZ2ll9SdaAdLjmgIR0Am0bc45tFbdX2UKGgGR8BmzrD2rXDnaAdLk2gIR0AnPAC4jKPodX2UKGgGR8BTcIr4FiazaAdLcWgIR0AnYnAIppevdX2UKGgGR8BrCcK/mDDkaAdLbGgIR0AnhqQiiZfEdX2UKGgGR8BjekQTVUdaaAdLoGgIR0AnvDiOvMbFdX2UKGgGR8BrvIh2W6bwaAdLfWgIR0An5dOZb6gvdX2UKGgGR8Ai+eCkGiYcaAdLamgIR0AoCW2w3YL9dX2UKGgGR8B3QPsjVx0daAdLg2gIR0AoNNu+AVfvdX2UKGgGR8Bw6XB+F10UaAdLY2gIR0AoVcry1/lRdX2UKGgGR8BxDxlyzXz2aAdLXGgIR0Aoqa3I+4b0dX2UKGgGR8BwjB0ihWYGaAdLs2gIR0Ao5qiXY150dX2UKGgGR8B6um+AVfu1aAdLi2gIR0ApFQ4S6DoRdX2UKGgGR8Bmae18b70naAdLcWgIR0ApO+SKWLP2dX2UKGgGR8Asq5bQkX1raAdLbmgIR0ApYflIVdondX2UKGgGR8BVg+P3i704aAdLxGgIR0Apo++M6zVudX2UKGgGR8Bs/CMDOkckaAdLXGgIR0ApwpiI+GGmdX2UKGgGR8CDUU/A0sOHaAdLxmgIR0AqOq+8Gs3idX2UKGgGR8ByXwYekpI+aAdNDAFoCEdAKpYI0IkZ8HV9lChoBkdAIzfyf+S8rmgHS2loCEdAKrlFUhmoSHV9lChoBkfANXeinHeaa2gHS29oCEdAKt8NYr8R+XV9lChoBkfAd+26cy31BmgHS6toCEdAKxicPOIInnV9lChoBkfAdrMRHPNVzmgHS3xoCEdAK0JC0F8ohXV9lChoBkfAd8wMyJsO5WgHS9FoCEdAK76yKNyYHHV9lChoBkfAf+NX1J17pmgHS65oCEdAK/nXumaYu3V9lChoBkfAb6E593KSxWgHS45oCEdALClNUOuq3nV9lChoBkfAXjgzyjHn2mgHS3RoCEdALE/ixVyWA3V9lChoBkfAcKhyv9tMwmgHS5RoCEdALIHzYmLLp3V9lChoBkfAdDCr433pOmgHS4doCEdALK7QC0WuYHV9lChoBkfAaMsm7aqS5mgHS2doCEdALNES26TW5HV9lChoBkfAZiHhb4agmWgHS3hoCEdALPlbu+h4+3V9lChoBkfAfN9kLhJiAmgHS5JoCEdALWD7655JLHV9lChoBkfAa9E7Dl5nlGgHS2NoCEdALYKYqoZQ53V9lChoBkfAWT++TNdJKGgHS7BoCEdALb23z+WGAXV9lChoBkfAcjnevIOpbWgHS4xoCEdALexywOe8PHV9lChoBkfAXsygGr0aqGgHS59oCEdALiFh5Pdl/nV9lChoBkfAe15xk/bCamgHS4JoCEdALkyOinHeanV9lChoBkfAckMNPxhDxGgHS8hoCEdALo9rftQbdnV9lChoBkfAcRc5iVjZtmgHS5FoCEdALvZPl+3H73V9lChoBkfAbH+wM6RyO2gHS3NoCEdALx2MCLdepnV9lChoBkfAVsWKMvRJE2gHS21oCEdAL0JTl1bJOnV9lChoBkfAYllM4cWCVmgHS5NoCEdAL3O2qkuYhXV9lChoBkfAb0rB7/n4f2gHS3xoCEdAL51YyO7xu3V9lChoBkfATfvnp0OmSGgHS4doCEdAL8p+c6Nly3V9lChoBkfAYWjYpUgjhWgHS5ZoCEdAL/yXMQmNR3V9lChoBkfAYIABgeA/cGgHS+loCEdAMEAKBun/DXV9lChoBkfAV2j1g6U7jmgHS99oCEdAMGXtnf2saXV9lChoBkfAays0sOG0u2gHS+ZoCEdAMIzmr8zhxnV9lChoBkfAWVNIy0rsjWgHS9FoCEdAMLAAp8WsR3V9lChoBkfAcmdW6shgV2gHS5poCEdAMMmPLgXMyXV9lChoBkfAbapDUExIrmgHS3loCEdAMN3JxNqQBHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 40,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.92,
|
82 |
+
"gae_lambda": 0.8,
|
83 |
+
"ent_coef": 0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 2,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04c00941a0c9afe7670e89aedacd62db4efb4e05b66293e57eb8e634f4a7f507
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f1b49c117767ede28534493990bcdfdeea9c59d8230ff2173c6884d87ff119
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-72-generic-x86_64-with-glibc2.31 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 1.12.1.post201
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.3
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (218 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -229.3460835, "std_reward": 148.34696695770248, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-06-04T14:18:09.392383"}
|