File size: 212,452 Bytes
fd82096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d163348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
[2023-06-19 14:05:40,113][00753] Saving configuration to /content/train_dir/default_experiment/config.json...
[2023-06-19 14:05:40,117][00753] Rollout worker 0 uses device cpu
[2023-06-19 14:05:40,118][00753] Rollout worker 1 uses device cpu
[2023-06-19 14:05:40,119][00753] Rollout worker 2 uses device cpu
[2023-06-19 14:05:40,120][00753] Rollout worker 3 uses device cpu
[2023-06-19 14:05:40,122][00753] Rollout worker 4 uses device cpu
[2023-06-19 14:05:40,123][00753] Rollout worker 5 uses device cpu
[2023-06-19 14:05:40,124][00753] Rollout worker 6 uses device cpu
[2023-06-19 14:05:40,125][00753] Rollout worker 7 uses device cpu
[2023-06-19 14:05:40,277][00753] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:05:40,278][00753] InferenceWorker_p0-w0: min num requests: 2
[2023-06-19 14:05:40,309][00753] Starting all processes...
[2023-06-19 14:05:40,310][00753] Starting process learner_proc0
[2023-06-19 14:05:40,361][00753] Starting all processes...
[2023-06-19 14:05:40,370][00753] Starting process inference_proc0-0
[2023-06-19 14:05:40,370][00753] Starting process rollout_proc0
[2023-06-19 14:05:40,374][00753] Starting process rollout_proc1
[2023-06-19 14:05:40,374][00753] Starting process rollout_proc2
[2023-06-19 14:05:40,374][00753] Starting process rollout_proc3
[2023-06-19 14:05:40,374][00753] Starting process rollout_proc4
[2023-06-19 14:05:40,374][00753] Starting process rollout_proc5
[2023-06-19 14:05:40,376][00753] Starting process rollout_proc6
[2023-06-19 14:05:40,376][00753] Starting process rollout_proc7
[2023-06-19 14:05:55,850][11471] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:05:55,852][11471] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-06-19 14:05:55,902][11471] Num visible devices: 1
[2023-06-19 14:05:55,945][11471] Starting seed is not provided
[2023-06-19 14:05:55,945][11471] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:05:55,946][11471] Initializing actor-critic model on device cuda:0
[2023-06-19 14:05:55,947][11471] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:05:55,949][11471] RunningMeanStd input shape: (1,)
[2023-06-19 14:05:56,018][11471] ConvEncoder: input_channels=3
[2023-06-19 14:05:56,443][11492] Worker 7 uses CPU cores [1]
[2023-06-19 14:05:56,483][11487] Worker 2 uses CPU cores [0]
[2023-06-19 14:05:56,501][11489] Worker 4 uses CPU cores [0]
[2023-06-19 14:05:56,575][11485] Worker 0 uses CPU cores [0]
[2023-06-19 14:05:56,628][11491] Worker 6 uses CPU cores [0]
[2023-06-19 14:05:56,642][11486] Worker 1 uses CPU cores [1]
[2023-06-19 14:05:56,642][11488] Worker 3 uses CPU cores [1]
[2023-06-19 14:05:56,668][11484] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:05:56,668][11484] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-06-19 14:05:56,683][11490] Worker 5 uses CPU cores [1]
[2023-06-19 14:05:56,692][11484] Num visible devices: 1
[2023-06-19 14:05:56,718][11471] Conv encoder output size: 512
[2023-06-19 14:05:56,719][11471] Policy head output size: 512
[2023-06-19 14:05:56,767][11471] Created Actor Critic model with architecture:
[2023-06-19 14:05:56,767][11471] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-06-19 14:06:00,270][00753] Heartbeat connected on Batcher_0
[2023-06-19 14:06:00,278][00753] Heartbeat connected on InferenceWorker_p0-w0
[2023-06-19 14:06:00,288][00753] Heartbeat connected on RolloutWorker_w0
[2023-06-19 14:06:00,290][00753] Heartbeat connected on RolloutWorker_w1
[2023-06-19 14:06:00,296][00753] Heartbeat connected on RolloutWorker_w2
[2023-06-19 14:06:00,297][00753] Heartbeat connected on RolloutWorker_w3
[2023-06-19 14:06:00,300][00753] Heartbeat connected on RolloutWorker_w4
[2023-06-19 14:06:00,303][00753] Heartbeat connected on RolloutWorker_w5
[2023-06-19 14:06:00,309][00753] Heartbeat connected on RolloutWorker_w6
[2023-06-19 14:06:00,310][00753] Heartbeat connected on RolloutWorker_w7
[2023-06-19 14:06:04,826][11471] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-06-19 14:06:04,827][11471] No checkpoints found
[2023-06-19 14:06:04,827][11471] Did not load from checkpoint, starting from scratch!
[2023-06-19 14:06:04,827][11471] Initialized policy 0 weights for model version 0
[2023-06-19 14:06:04,830][11471] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:06:04,837][11471] LearnerWorker_p0 finished initialization!
[2023-06-19 14:06:04,837][00753] Heartbeat connected on LearnerWorker_p0
[2023-06-19 14:06:05,020][11484] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:06:05,021][11484] RunningMeanStd input shape: (1,)
[2023-06-19 14:06:05,034][11484] ConvEncoder: input_channels=3
[2023-06-19 14:06:05,138][11484] Conv encoder output size: 512
[2023-06-19 14:06:05,139][11484] Policy head output size: 512
[2023-06-19 14:06:05,247][00753] Inference worker 0-0 is ready!
[2023-06-19 14:06:05,250][00753] All inference workers are ready! Signal rollout workers to start!
[2023-06-19 14:06:05,344][11487] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,349][11489] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,353][11491] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,347][11485] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,409][11488] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,426][11492] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,428][11486] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:05,413][11490] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:06:07,489][11485] Decorrelating experience for 0 frames...
[2023-06-19 14:06:07,493][11489] Decorrelating experience for 0 frames...
[2023-06-19 14:06:07,495][11491] Decorrelating experience for 0 frames...
[2023-06-19 14:06:07,488][11487] Decorrelating experience for 0 frames...
[2023-06-19 14:06:07,812][11492] Decorrelating experience for 0 frames...
[2023-06-19 14:06:07,813][11486] Decorrelating experience for 0 frames...
[2023-06-19 14:06:07,821][11490] Decorrelating experience for 0 frames...
[2023-06-19 14:06:08,860][11488] Decorrelating experience for 0 frames...
[2023-06-19 14:06:09,153][11486] Decorrelating experience for 32 frames...
[2023-06-19 14:06:09,474][11489] Decorrelating experience for 32 frames...
[2023-06-19 14:06:09,478][11485] Decorrelating experience for 32 frames...
[2023-06-19 14:06:09,532][00753] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:06:09,734][11487] Decorrelating experience for 32 frames...
[2023-06-19 14:06:09,741][11491] Decorrelating experience for 32 frames...
[2023-06-19 14:06:10,838][11492] Decorrelating experience for 32 frames...
[2023-06-19 14:06:10,975][11490] Decorrelating experience for 32 frames...
[2023-06-19 14:06:11,104][11488] Decorrelating experience for 32 frames...
[2023-06-19 14:06:11,104][11487] Decorrelating experience for 64 frames...
[2023-06-19 14:06:12,281][11489] Decorrelating experience for 64 frames...
[2023-06-19 14:06:12,438][11485] Decorrelating experience for 64 frames...
[2023-06-19 14:06:12,448][11486] Decorrelating experience for 64 frames...
[2023-06-19 14:06:12,587][11488] Decorrelating experience for 64 frames...
[2023-06-19 14:06:12,708][11487] Decorrelating experience for 96 frames...
[2023-06-19 14:06:13,469][11490] Decorrelating experience for 64 frames...
[2023-06-19 14:06:13,659][00753] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 753], exiting...
[2023-06-19 14:06:13,666][11471] Stopping Batcher_0...
[2023-06-19 14:06:13,667][11471] Loop batcher_evt_loop terminating...
[2023-06-19 14:06:13,668][11471] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth...
[2023-06-19 14:06:13,667][00753] Runner profile tree view:
main_loop: 33.3578
[2023-06-19 14:06:13,670][00753] Collected {0: 0}, FPS: 0.0
[2023-06-19 14:06:13,684][11489] VizDoom game.init() threw an exception SignalException('Signal SIGINT received. ViZDoom instance has been closed.'). Terminate process...
[2023-06-19 14:06:13,687][11485] VizDoom game.init() threw an exception SignalException('Signal SIGINT received. ViZDoom instance has been closed.'). Terminate process...
[2023-06-19 14:06:13,690][11491] VizDoom game.init() threw an exception SignalException('Signal SIGINT received. ViZDoom instance has been closed.'). Terminate process...
[2023-06-19 14:06:13,688][11485] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 462, in reset
    obs, info = self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-06-19 14:06:13,695][11485] Unhandled exception  in evt loop rollout_proc0_evt_loop
[2023-06-19 14:06:13,685][11489] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 462, in reset
    obs, info = self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-06-19 14:06:13,698][11489] Unhandled exception  in evt loop rollout_proc4_evt_loop
[2023-06-19 14:06:13,691][11491] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 462, in reset
    obs, info = self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-06-19 14:06:13,700][11491] Unhandled exception  in evt loop rollout_proc6_evt_loop
[2023-06-19 14:06:13,775][11488] VizDoom game.init() threw an exception SignalException('Signal SIGINT received. ViZDoom instance has been closed.'). Terminate process...
[2023-06-19 14:06:13,755][11490] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 439, in _reset
    observations, rew, terminated, truncated, info = e.step(actions)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 408, in step
    return self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 129, in step
    obs, rew, terminated, truncated, info = self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 115, in step
    obs, rew, terminated, truncated, info = self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
    observation, reward, terminated, truncated, info = self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 469, in step
    observation, reward, terminated, truncated, info = self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 86, in step
    obs, reward, terminated, truncated, info = self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 408, in step
    return self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
    obs, reward, terminated, truncated, info = self.env.step(action)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
    reward = self.game.make_action(actions_flattened, self.skip_frames)
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
[2023-06-19 14:06:13,776][11490] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc5_evt_loop
[2023-06-19 14:06:13,785][11471] Stopping LearnerWorker_p0...
[2023-06-19 14:06:13,786][11471] Loop learner_proc0_evt_loop terminating...
[2023-06-19 14:06:13,780][11488] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 462, in reset
    obs, info = self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 414, in reset
    return self.env.reset(seed=seed, options=options)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-06-19 14:06:13,815][11488] Unhandled exception  in evt loop rollout_proc3_evt_loop
[2023-06-19 14:06:13,879][11487] Stopping RolloutWorker_w2...
[2023-06-19 14:06:13,880][11487] Loop rollout_proc2_evt_loop terminating...
[2023-06-19 14:06:14,308][11484] Weights refcount: 2 0
[2023-06-19 14:06:14,312][11484] Stopping InferenceWorker_p0-w0...
[2023-06-19 14:06:14,312][11484] Loop inference_proc0-0_evt_loop terminating...
[2023-06-19 14:06:15,958][11486] Decorrelating experience for 96 frames...
[2023-06-19 14:06:15,961][11492] Decorrelating experience for 64 frames...
[2023-06-19 14:06:16,215][11486] Stopping RolloutWorker_w1...
[2023-06-19 14:06:16,218][11486] Loop rollout_proc1_evt_loop terminating...
[2023-06-19 14:06:17,257][11492] Decorrelating experience for 96 frames...
[2023-06-19 14:06:17,355][11492] Stopping RolloutWorker_w7...
[2023-06-19 14:06:17,356][11492] Loop rollout_proc7_evt_loop terminating...
[2023-06-19 14:11:33,477][00753] Environment doom_basic already registered, overwriting...
[2023-06-19 14:11:33,479][00753] Environment doom_two_colors_easy already registered, overwriting...
[2023-06-19 14:11:33,481][00753] Environment doom_two_colors_hard already registered, overwriting...
[2023-06-19 14:11:33,482][00753] Environment doom_dm already registered, overwriting...
[2023-06-19 14:11:33,483][00753] Environment doom_dwango5 already registered, overwriting...
[2023-06-19 14:11:33,485][00753] Environment doom_my_way_home_flat_actions already registered, overwriting...
[2023-06-19 14:11:33,486][00753] Environment doom_defend_the_center_flat_actions already registered, overwriting...
[2023-06-19 14:11:33,488][00753] Environment doom_my_way_home already registered, overwriting...
[2023-06-19 14:11:33,489][00753] Environment doom_deadly_corridor already registered, overwriting...
[2023-06-19 14:11:33,490][00753] Environment doom_defend_the_center already registered, overwriting...
[2023-06-19 14:11:33,492][00753] Environment doom_defend_the_line already registered, overwriting...
[2023-06-19 14:11:33,493][00753] Environment doom_health_gathering already registered, overwriting...
[2023-06-19 14:11:33,494][00753] Environment doom_health_gathering_supreme already registered, overwriting...
[2023-06-19 14:11:33,495][00753] Environment doom_battle already registered, overwriting...
[2023-06-19 14:11:33,496][00753] Environment doom_battle2 already registered, overwriting...
[2023-06-19 14:11:33,498][00753] Environment doom_duel_bots already registered, overwriting...
[2023-06-19 14:11:33,499][00753] Environment doom_deathmatch_bots already registered, overwriting...
[2023-06-19 14:11:33,500][00753] Environment doom_duel already registered, overwriting...
[2023-06-19 14:11:33,501][00753] Environment doom_deathmatch_full already registered, overwriting...
[2023-06-19 14:11:33,503][00753] Environment doom_benchmark already registered, overwriting...
[2023-06-19 14:11:33,504][00753] register_encoder_factory: <function make_vizdoom_encoder at 0x7f1cb360c4c0>
[2023-06-19 14:11:33,527][00753] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-06-19 14:11:33,541][00753] Experiment dir /content/train_dir/default_experiment already exists!
[2023-06-19 14:11:33,542][00753] Resuming existing experiment from /content/train_dir/default_experiment...
[2023-06-19 14:11:33,544][00753] Weights and Biases integration disabled
[2023-06-19 14:11:33,548][00753] Environment var CUDA_VISIBLE_DEVICES is 0

[2023-06-19 14:11:35,485][00753] Starting experiment with the following configuration:
help=False
algo=APPO
env=doom_health_gathering_supreme
experiment=default_experiment
train_dir=/content/train_dir
restart_behavior=resume
device=gpu
seed=None
num_policies=1
async_rl=True
serial_mode=False
batched_sampling=False
num_batches_to_accumulate=2
worker_num_splits=2
policy_workers_per_policy=1
max_policy_lag=1000
num_workers=8
num_envs_per_worker=4
batch_size=1024
num_batches_per_epoch=1
num_epochs=1
rollout=32
recurrence=32
shuffle_minibatches=False
gamma=0.99
reward_scale=1.0
reward_clip=1000.0
value_bootstrap=False
normalize_returns=True
exploration_loss_coeff=0.001
value_loss_coeff=0.5
kl_loss_coeff=0.0
exploration_loss=symmetric_kl
gae_lambda=0.95
ppo_clip_ratio=0.1
ppo_clip_value=0.2
with_vtrace=False
vtrace_rho=1.0
vtrace_c=1.0
optimizer=adam
adam_eps=1e-06
adam_beta1=0.9
adam_beta2=0.999
max_grad_norm=4.0
learning_rate=0.0001
lr_schedule=constant
lr_schedule_kl_threshold=0.008
lr_adaptive_min=1e-06
lr_adaptive_max=0.01
obs_subtract_mean=0.0
obs_scale=255.0
normalize_input=True
normalize_input_keys=None
decorrelate_experience_max_seconds=0
decorrelate_envs_on_one_worker=True
actor_worker_gpus=[]
set_workers_cpu_affinity=True
force_envs_single_thread=False
default_niceness=0
log_to_file=True
experiment_summaries_interval=10
flush_summaries_interval=30
stats_avg=100
summaries_use_frameskip=True
heartbeat_interval=20
heartbeat_reporting_interval=600
train_for_env_steps=4000000
train_for_seconds=10000000000
save_every_sec=120
keep_checkpoints=2
load_checkpoint_kind=latest
save_milestones_sec=-1
save_best_every_sec=5
save_best_metric=reward
save_best_after=100000
benchmark=False
encoder_mlp_layers=[512, 512]
encoder_conv_architecture=convnet_simple
encoder_conv_mlp_layers=[512]
use_rnn=True
rnn_size=512
rnn_type=gru
rnn_num_layers=1
decoder_mlp_layers=[]
nonlinearity=elu
policy_initialization=orthogonal
policy_init_gain=1.0
actor_critic_share_weights=True
adaptive_stddev=True
continuous_tanh_scale=0.0
initial_stddev=1.0
use_env_info_cache=False
env_gpu_actions=False
env_gpu_observations=True
env_frameskip=4
env_framestack=1
pixel_format=CHW
use_record_episode_statistics=False
with_wandb=False
wandb_user=None
wandb_project=sample_factory
wandb_group=None
wandb_job_type=SF
wandb_tags=[]
with_pbt=False
pbt_mix_policies_in_one_env=True
pbt_period_env_steps=5000000
pbt_start_mutation=20000000
pbt_replace_fraction=0.3
pbt_mutation_rate=0.15
pbt_replace_reward_gap=0.1
pbt_replace_reward_gap_absolute=1e-06
pbt_optimize_gamma=False
pbt_target_objective=true_objective
pbt_perturb_min=1.1
pbt_perturb_max=1.5
num_agents=-1
num_humans=0
num_bots=-1
start_bot_difficulty=None
timelimit=None
res_w=128
res_h=72
wide_aspect_ratio=False
eval_env_frameskip=1
fps=35
command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
git_hash=unknown
git_repo_name=not a git repository
[2023-06-19 14:11:35,488][00753] Saving configuration to /content/train_dir/default_experiment/config.json...
[2023-06-19 14:11:35,495][00753] Rollout worker 0 uses device cpu
[2023-06-19 14:11:35,497][00753] Rollout worker 1 uses device cpu
[2023-06-19 14:11:35,498][00753] Rollout worker 2 uses device cpu
[2023-06-19 14:11:35,499][00753] Rollout worker 3 uses device cpu
[2023-06-19 14:11:35,501][00753] Rollout worker 4 uses device cpu
[2023-06-19 14:11:35,502][00753] Rollout worker 5 uses device cpu
[2023-06-19 14:11:35,505][00753] Rollout worker 6 uses device cpu
[2023-06-19 14:11:35,507][00753] Rollout worker 7 uses device cpu
[2023-06-19 14:11:35,600][00753] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:11:35,602][00753] InferenceWorker_p0-w0: min num requests: 2
[2023-06-19 14:11:35,631][00753] Starting all processes...
[2023-06-19 14:11:35,634][00753] Starting process learner_proc0
[2023-06-19 14:11:35,681][00753] Starting all processes...
[2023-06-19 14:11:35,686][00753] Starting process inference_proc0-0
[2023-06-19 14:11:35,688][00753] Starting process rollout_proc0
[2023-06-19 14:11:35,704][00753] Starting process rollout_proc1
[2023-06-19 14:11:35,705][00753] Starting process rollout_proc2
[2023-06-19 14:11:35,705][00753] Starting process rollout_proc3
[2023-06-19 14:11:35,705][00753] Starting process rollout_proc4
[2023-06-19 14:11:35,705][00753] Starting process rollout_proc5
[2023-06-19 14:11:35,705][00753] Starting process rollout_proc6
[2023-06-19 14:11:35,705][00753] Starting process rollout_proc7
[2023-06-19 14:11:50,934][15729] Worker 3 uses CPU cores [1]
[2023-06-19 14:11:51,020][15712] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:11:51,020][15712] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-06-19 14:11:51,025][15733] Worker 7 uses CPU cores [1]
[2023-06-19 14:11:51,048][15727] Worker 1 uses CPU cores [1]
[2023-06-19 14:11:51,063][15712] Num visible devices: 1
[2023-06-19 14:11:51,088][15731] Worker 4 uses CPU cores [0]
[2023-06-19 14:11:51,088][15730] Worker 5 uses CPU cores [1]
[2023-06-19 14:11:51,104][15726] Worker 0 uses CPU cores [0]
[2023-06-19 14:11:51,107][15712] Starting seed is not provided
[2023-06-19 14:11:51,107][15712] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:11:51,108][15712] Initializing actor-critic model on device cuda:0
[2023-06-19 14:11:51,109][15712] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:11:51,111][15712] RunningMeanStd input shape: (1,)
[2023-06-19 14:11:51,121][15728] Worker 2 uses CPU cores [0]
[2023-06-19 14:11:51,144][15712] ConvEncoder: input_channels=3
[2023-06-19 14:11:51,177][15725] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:11:51,178][15725] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-06-19 14:11:51,195][15732] Worker 6 uses CPU cores [0]
[2023-06-19 14:11:51,209][15725] Num visible devices: 1
[2023-06-19 14:11:51,306][15712] Conv encoder output size: 512
[2023-06-19 14:11:51,306][15712] Policy head output size: 512
[2023-06-19 14:11:51,320][15712] Created Actor Critic model with architecture:
[2023-06-19 14:11:51,320][15712] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-06-19 14:11:53,852][15712] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-06-19 14:11:53,854][15712] No checkpoints found
[2023-06-19 14:11:53,854][15712] Did not load from checkpoint, starting from scratch!
[2023-06-19 14:11:53,855][15712] Initialized policy 0 weights for model version 0
[2023-06-19 14:11:53,863][15712] LearnerWorker_p0 finished initialization!
[2023-06-19 14:11:53,863][15712] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:11:54,093][15725] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:11:54,094][15725] RunningMeanStd input shape: (1,)
[2023-06-19 14:11:54,113][15725] ConvEncoder: input_channels=3
[2023-06-19 14:11:54,292][15725] Conv encoder output size: 512
[2023-06-19 14:11:54,293][15725] Policy head output size: 512
[2023-06-19 14:11:54,380][00753] Inference worker 0-0 is ready!
[2023-06-19 14:11:54,382][00753] All inference workers are ready! Signal rollout workers to start!
[2023-06-19 14:11:54,493][15728] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,500][15732] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,502][15731] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,504][15726] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,571][15729] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,573][15733] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,575][15727] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:54,564][15730] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:11:55,596][00753] Heartbeat connected on LearnerWorker_p0
[2023-06-19 14:11:55,601][00753] Heartbeat connected on Batcher_0
[2023-06-19 14:11:55,630][00753] Heartbeat connected on InferenceWorker_p0-w0
[2023-06-19 14:11:56,353][15729] Decorrelating experience for 0 frames...
[2023-06-19 14:11:56,364][15733] Decorrelating experience for 0 frames...
[2023-06-19 14:11:56,773][15728] Decorrelating experience for 0 frames...
[2023-06-19 14:11:56,775][15731] Decorrelating experience for 0 frames...
[2023-06-19 14:11:56,778][15726] Decorrelating experience for 0 frames...
[2023-06-19 14:11:56,785][15732] Decorrelating experience for 0 frames...
[2023-06-19 14:11:57,456][15733] Decorrelating experience for 32 frames...
[2023-06-19 14:11:58,310][15731] Decorrelating experience for 32 frames...
[2023-06-19 14:11:58,375][15732] Decorrelating experience for 32 frames...
[2023-06-19 14:11:58,522][15729] Decorrelating experience for 32 frames...
[2023-06-19 14:11:58,542][15727] Decorrelating experience for 0 frames...
[2023-06-19 14:11:58,547][15730] Decorrelating experience for 0 frames...
[2023-06-19 14:11:58,549][00753] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:11:59,421][15728] Decorrelating experience for 32 frames...
[2023-06-19 14:11:59,831][15733] Decorrelating experience for 64 frames...
[2023-06-19 14:11:59,840][15730] Decorrelating experience for 32 frames...
[2023-06-19 14:12:00,246][15726] Decorrelating experience for 32 frames...
[2023-06-19 14:12:00,436][15731] Decorrelating experience for 64 frames...
[2023-06-19 14:12:01,005][15728] Decorrelating experience for 64 frames...
[2023-06-19 14:12:01,145][15732] Decorrelating experience for 64 frames...
[2023-06-19 14:12:01,148][15727] Decorrelating experience for 32 frames...
[2023-06-19 14:12:01,361][15729] Decorrelating experience for 64 frames...
[2023-06-19 14:12:01,535][15730] Decorrelating experience for 64 frames...
[2023-06-19 14:12:02,188][15728] Decorrelating experience for 96 frames...
[2023-06-19 14:12:02,238][15726] Decorrelating experience for 64 frames...
[2023-06-19 14:12:02,287][15727] Decorrelating experience for 64 frames...
[2023-06-19 14:12:02,355][15729] Decorrelating experience for 96 frames...
[2023-06-19 14:12:02,424][00753] Heartbeat connected on RolloutWorker_w2
[2023-06-19 14:12:02,577][00753] Heartbeat connected on RolloutWorker_w3
[2023-06-19 14:12:03,164][15731] Decorrelating experience for 96 frames...
[2023-06-19 14:12:03,436][00753] Heartbeat connected on RolloutWorker_w4
[2023-06-19 14:12:03,549][00753] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 51.2. Samples: 256. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:12:03,554][00753] Avg episode reward: [(0, '0.853')]
[2023-06-19 14:12:04,017][15730] Decorrelating experience for 96 frames...
[2023-06-19 14:12:04,337][15727] Decorrelating experience for 96 frames...
[2023-06-19 14:12:04,383][15732] Decorrelating experience for 96 frames...
[2023-06-19 14:12:04,469][00753] Heartbeat connected on RolloutWorker_w5
[2023-06-19 14:12:04,512][15726] Decorrelating experience for 96 frames...
[2023-06-19 14:12:04,731][00753] Heartbeat connected on RolloutWorker_w6
[2023-06-19 14:12:04,799][00753] Heartbeat connected on RolloutWorker_w1
[2023-06-19 14:12:04,819][00753] Heartbeat connected on RolloutWorker_w0
[2023-06-19 14:12:05,781][15733] Decorrelating experience for 96 frames...
[2023-06-19 14:12:06,301][00753] Heartbeat connected on RolloutWorker_w7
[2023-06-19 14:12:06,935][15712] Signal inference workers to stop experience collection...
[2023-06-19 14:12:06,991][15725] InferenceWorker_p0-w0: stopping experience collection
[2023-06-19 14:12:08,549][00753] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 220.6. Samples: 2206. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:12:08,558][00753] Avg episode reward: [(0, '2.382')]
[2023-06-19 14:12:11,552][15712] Signal inference workers to resume experience collection...
[2023-06-19 14:12:11,552][15725] InferenceWorker_p0-w0: resuming experience collection
[2023-06-19 14:12:13,555][00753] Fps is (10 sec: 409.3, 60 sec: 273.0, 300 sec: 273.0). Total num frames: 4096. Throughput: 0: 197.8. Samples: 2968. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2023-06-19 14:12:13,558][00753] Avg episode reward: [(0, '2.520')]
[2023-06-19 14:12:18,549][00753] Fps is (10 sec: 2048.0, 60 sec: 1024.0, 300 sec: 1024.0). Total num frames: 20480. Throughput: 0: 317.7. Samples: 6354. Policy #0 lag: (min: 0.0, avg: 0.8, max: 3.0)
[2023-06-19 14:12:18,551][00753] Avg episode reward: [(0, '3.413')]
[2023-06-19 14:12:23,173][15725] Updated weights for policy 0, policy_version 10 (0.0012)
[2023-06-19 14:12:23,549][00753] Fps is (10 sec: 3688.5, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 40960. Throughput: 0: 350.8. Samples: 8770. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:12:23,552][00753] Avg episode reward: [(0, '4.084')]
[2023-06-19 14:12:28,549][00753] Fps is (10 sec: 4096.1, 60 sec: 2048.0, 300 sec: 2048.0). Total num frames: 61440. Throughput: 0: 494.1. Samples: 14822. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:12:28,551][00753] Avg episode reward: [(0, '4.548')]
[2023-06-19 14:12:33,554][00753] Fps is (10 sec: 3684.6, 60 sec: 2223.2, 300 sec: 2223.2). Total num frames: 77824. Throughput: 0: 586.4. Samples: 20526. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:12:33,558][00753] Avg episode reward: [(0, '4.517')]
[2023-06-19 14:12:34,205][15725] Updated weights for policy 0, policy_version 20 (0.0017)
[2023-06-19 14:12:38,549][00753] Fps is (10 sec: 3276.8, 60 sec: 2355.2, 300 sec: 2355.2). Total num frames: 94208. Throughput: 0: 565.2. Samples: 22610. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:12:38,551][00753] Avg episode reward: [(0, '4.478')]
[2023-06-19 14:12:43,549][00753] Fps is (10 sec: 3278.5, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 110592. Throughput: 0: 612.8. Samples: 27578. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:12:43,551][00753] Avg episode reward: [(0, '4.381')]
[2023-06-19 14:12:43,559][15712] Saving new best policy, reward=4.381!
[2023-06-19 14:12:45,633][15725] Updated weights for policy 0, policy_version 30 (0.0021)
[2023-06-19 14:12:48,549][00753] Fps is (10 sec: 4095.9, 60 sec: 2703.3, 300 sec: 2703.3). Total num frames: 135168. Throughput: 0: 758.1. Samples: 34370. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:12:48,552][00753] Avg episode reward: [(0, '4.541')]
[2023-06-19 14:12:48,556][15712] Saving new best policy, reward=4.541!
[2023-06-19 14:12:53,550][00753] Fps is (10 sec: 4095.3, 60 sec: 2755.4, 300 sec: 2755.4). Total num frames: 151552. Throughput: 0: 781.9. Samples: 37392. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:12:53,557][00753] Avg episode reward: [(0, '4.502')]
[2023-06-19 14:12:57,335][15725] Updated weights for policy 0, policy_version 40 (0.0021)
[2023-06-19 14:12:58,549][00753] Fps is (10 sec: 2867.2, 60 sec: 2730.7, 300 sec: 2730.7). Total num frames: 163840. Throughput: 0: 857.1. Samples: 41534. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:12:58,556][00753] Avg episode reward: [(0, '4.432')]
[2023-06-19 14:13:03,549][00753] Fps is (10 sec: 3277.3, 60 sec: 3072.0, 300 sec: 2835.7). Total num frames: 184320. Throughput: 0: 901.1. Samples: 46902. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:13:03,554][00753] Avg episode reward: [(0, '4.480')]
[2023-06-19 14:13:07,653][15725] Updated weights for policy 0, policy_version 50 (0.0016)
[2023-06-19 14:13:08,549][00753] Fps is (10 sec: 4096.1, 60 sec: 3413.3, 300 sec: 2925.7). Total num frames: 204800. Throughput: 0: 921.5. Samples: 50238. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:13:08,551][00753] Avg episode reward: [(0, '4.520')]
[2023-06-19 14:13:13,554][00753] Fps is (10 sec: 4093.9, 60 sec: 3686.5, 300 sec: 3003.5). Total num frames: 225280. Throughput: 0: 923.6. Samples: 56388. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:13:13,557][00753] Avg episode reward: [(0, '4.386')]
[2023-06-19 14:13:18,552][00753] Fps is (10 sec: 3275.8, 60 sec: 3618.0, 300 sec: 2969.5). Total num frames: 237568. Throughput: 0: 893.6. Samples: 60738. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:13:18,554][00753] Avg episode reward: [(0, '4.350')]
[2023-06-19 14:13:20,124][15725] Updated weights for policy 0, policy_version 60 (0.0023)
[2023-06-19 14:13:23,549][00753] Fps is (10 sec: 3278.5, 60 sec: 3618.1, 300 sec: 3035.9). Total num frames: 258048. Throughput: 0: 898.3. Samples: 63032. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:13:23,551][00753] Avg episode reward: [(0, '4.358')]
[2023-06-19 14:13:28,549][00753] Fps is (10 sec: 4507.0, 60 sec: 3686.4, 300 sec: 3140.3). Total num frames: 282624. Throughput: 0: 940.1. Samples: 69884. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:13:28,551][00753] Avg episode reward: [(0, '4.463')]
[2023-06-19 14:13:29,476][15725] Updated weights for policy 0, policy_version 70 (0.0020)
[2023-06-19 14:13:33,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.7, 300 sec: 3147.5). Total num frames: 299008. Throughput: 0: 922.1. Samples: 75864. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:13:33,552][00753] Avg episode reward: [(0, '4.633')]
[2023-06-19 14:13:33,566][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000073_299008.pth...
[2023-06-19 14:13:33,703][15712] Saving new best policy, reward=4.633!
[2023-06-19 14:13:38,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3113.0). Total num frames: 311296. Throughput: 0: 898.8. Samples: 77836. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-06-19 14:13:38,555][00753] Avg episode reward: [(0, '4.622')]
[2023-06-19 14:13:42,437][15725] Updated weights for policy 0, policy_version 80 (0.0028)
[2023-06-19 14:13:43,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3159.8). Total num frames: 331776. Throughput: 0: 910.3. Samples: 82498. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:13:43,556][00753] Avg episode reward: [(0, '4.430')]
[2023-06-19 14:13:48,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3202.3). Total num frames: 352256. Throughput: 0: 944.7. Samples: 89412. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:13:48,551][00753] Avg episode reward: [(0, '4.335')]
[2023-06-19 14:13:51,112][15725] Updated weights for policy 0, policy_version 90 (0.0023)
[2023-06-19 14:13:53,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.5, 300 sec: 3241.2). Total num frames: 372736. Throughput: 0: 946.4. Samples: 92826. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:13:53,551][00753] Avg episode reward: [(0, '4.322')]
[2023-06-19 14:13:58,553][00753] Fps is (10 sec: 3684.9, 60 sec: 3754.4, 300 sec: 3242.6). Total num frames: 389120. Throughput: 0: 905.0. Samples: 97110. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:13:58,556][00753] Avg episode reward: [(0, '4.420')]
[2023-06-19 14:14:03,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3244.0). Total num frames: 405504. Throughput: 0: 919.6. Samples: 102116. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:14:03,553][00753] Avg episode reward: [(0, '4.471')]
[2023-06-19 14:14:03,967][15725] Updated weights for policy 0, policy_version 100 (0.0015)
[2023-06-19 14:14:08,549][00753] Fps is (10 sec: 4097.7, 60 sec: 3754.7, 300 sec: 3308.3). Total num frames: 430080. Throughput: 0: 945.2. Samples: 105566. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:14:08,556][00753] Avg episode reward: [(0, '4.427')]
[2023-06-19 14:14:13,551][00753] Fps is (10 sec: 4095.2, 60 sec: 3686.6, 300 sec: 3307.1). Total num frames: 446464. Throughput: 0: 939.4. Samples: 112158. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:13,562][00753] Avg episode reward: [(0, '4.576')]
[2023-06-19 14:14:13,795][15725] Updated weights for policy 0, policy_version 110 (0.0016)
[2023-06-19 14:14:18,556][00753] Fps is (10 sec: 3274.5, 60 sec: 3754.4, 300 sec: 3305.9). Total num frames: 462848. Throughput: 0: 903.6. Samples: 116534. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:18,558][00753] Avg episode reward: [(0, '4.581')]
[2023-06-19 14:14:23,549][00753] Fps is (10 sec: 3277.5, 60 sec: 3686.4, 300 sec: 3305.0). Total num frames: 479232. Throughput: 0: 907.4. Samples: 118670. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-06-19 14:14:23,558][00753] Avg episode reward: [(0, '4.547')]
[2023-06-19 14:14:25,764][15725] Updated weights for policy 0, policy_version 120 (0.0036)
[2023-06-19 14:14:28,549][00753] Fps is (10 sec: 4098.9, 60 sec: 3686.4, 300 sec: 3358.7). Total num frames: 503808. Throughput: 0: 952.0. Samples: 125338. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:28,551][00753] Avg episode reward: [(0, '4.435')]
[2023-06-19 14:14:33,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3382.5). Total num frames: 524288. Throughput: 0: 936.6. Samples: 131560. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:33,552][00753] Avg episode reward: [(0, '4.460')]
[2023-06-19 14:14:36,528][15725] Updated weights for policy 0, policy_version 130 (0.0014)
[2023-06-19 14:14:38,549][00753] Fps is (10 sec: 3276.6, 60 sec: 3754.6, 300 sec: 3353.6). Total num frames: 536576. Throughput: 0: 907.5. Samples: 133666. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:14:38,555][00753] Avg episode reward: [(0, '4.480')]
[2023-06-19 14:14:43,549][00753] Fps is (10 sec: 2867.1, 60 sec: 3686.4, 300 sec: 3351.3). Total num frames: 552960. Throughput: 0: 910.7. Samples: 138088. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:43,556][00753] Avg episode reward: [(0, '4.674')]
[2023-06-19 14:14:43,567][15712] Saving new best policy, reward=4.674!
[2023-06-19 14:14:47,558][15725] Updated weights for policy 0, policy_version 140 (0.0031)
[2023-06-19 14:14:48,549][00753] Fps is (10 sec: 4096.2, 60 sec: 3754.7, 300 sec: 3397.3). Total num frames: 577536. Throughput: 0: 951.2. Samples: 144920. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:14:48,551][00753] Avg episode reward: [(0, '4.762')]
[2023-06-19 14:14:48,556][15712] Saving new best policy, reward=4.762!
[2023-06-19 14:14:53,549][00753] Fps is (10 sec: 4505.7, 60 sec: 3754.7, 300 sec: 3417.2). Total num frames: 598016. Throughput: 0: 948.8. Samples: 148264. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:53,552][00753] Avg episode reward: [(0, '4.571')]
[2023-06-19 14:14:58,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.7, 300 sec: 3390.6). Total num frames: 610304. Throughput: 0: 903.7. Samples: 152822. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:14:58,551][00753] Avg episode reward: [(0, '4.736')]
[2023-06-19 14:14:59,439][15725] Updated weights for policy 0, policy_version 150 (0.0018)
[2023-06-19 14:15:03,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3387.5). Total num frames: 626688. Throughput: 0: 910.6. Samples: 157506. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:15:03,551][00753] Avg episode reward: [(0, '4.615')]
[2023-06-19 14:15:08,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3427.7). Total num frames: 651264. Throughput: 0: 940.6. Samples: 160996. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:15:08,556][00753] Avg episode reward: [(0, '4.748')]
[2023-06-19 14:15:09,308][15725] Updated weights for policy 0, policy_version 160 (0.0012)
[2023-06-19 14:15:13,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.8, 300 sec: 3444.8). Total num frames: 671744. Throughput: 0: 943.2. Samples: 167780. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:15:13,553][00753] Avg episode reward: [(0, '4.610')]
[2023-06-19 14:15:18,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.8, 300 sec: 3420.2). Total num frames: 684032. Throughput: 0: 901.4. Samples: 172124. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:15:18,551][00753] Avg episode reward: [(0, '4.361')]
[2023-06-19 14:15:21,959][15725] Updated weights for policy 0, policy_version 170 (0.0021)
[2023-06-19 14:15:23,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3416.7). Total num frames: 700416. Throughput: 0: 901.8. Samples: 174248. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:15:23,555][00753] Avg episode reward: [(0, '4.512')]
[2023-06-19 14:15:28,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3452.3). Total num frames: 724992. Throughput: 0: 945.1. Samples: 180618. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:15:28,556][00753] Avg episode reward: [(0, '4.620')]
[2023-06-19 14:15:31,122][15725] Updated weights for policy 0, policy_version 180 (0.0019)
[2023-06-19 14:15:33,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3467.3). Total num frames: 745472. Throughput: 0: 935.0. Samples: 186994. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:15:33,558][00753] Avg episode reward: [(0, '4.729')]
[2023-06-19 14:15:33,567][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000182_745472.pth...
[2023-06-19 14:15:38,549][00753] Fps is (10 sec: 3276.6, 60 sec: 3686.4, 300 sec: 3444.4). Total num frames: 757760. Throughput: 0: 907.2. Samples: 189088. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:15:38,552][00753] Avg episode reward: [(0, '4.905')]
[2023-06-19 14:15:38,556][15712] Saving new best policy, reward=4.905!
[2023-06-19 14:15:43,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3440.6). Total num frames: 774144. Throughput: 0: 900.0. Samples: 193322. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:15:43,554][00753] Avg episode reward: [(0, '4.924')]
[2023-06-19 14:15:43,565][15712] Saving new best policy, reward=4.924!
[2023-06-19 14:15:44,200][15725] Updated weights for policy 0, policy_version 190 (0.0025)
[2023-06-19 14:15:48,549][00753] Fps is (10 sec: 3686.6, 60 sec: 3618.1, 300 sec: 3454.9). Total num frames: 794624. Throughput: 0: 944.5. Samples: 200008. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:15:48,551][00753] Avg episode reward: [(0, '4.913')]
[2023-06-19 14:15:53,549][00753] Fps is (10 sec: 4096.1, 60 sec: 3618.1, 300 sec: 3468.5). Total num frames: 815104. Throughput: 0: 941.1. Samples: 203346. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-06-19 14:15:53,551][00753] Avg episode reward: [(0, '4.802')]
[2023-06-19 14:15:53,776][15725] Updated weights for policy 0, policy_version 200 (0.0026)
[2023-06-19 14:15:58,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3464.5). Total num frames: 831488. Throughput: 0: 893.8. Samples: 208000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:15:58,551][00753] Avg episode reward: [(0, '4.682')]
[2023-06-19 14:16:03,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3444.0). Total num frames: 843776. Throughput: 0: 897.2. Samples: 212500. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-06-19 14:16:03,551][00753] Avg episode reward: [(0, '4.617')]
[2023-06-19 14:16:06,146][15725] Updated weights for policy 0, policy_version 210 (0.0031)
[2023-06-19 14:16:08,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3473.4). Total num frames: 868352. Throughput: 0: 926.1. Samples: 215922. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:16:08,552][00753] Avg episode reward: [(0, '4.709')]
[2023-06-19 14:16:13,551][00753] Fps is (10 sec: 4504.7, 60 sec: 3618.0, 300 sec: 3485.6). Total num frames: 888832. Throughput: 0: 933.7. Samples: 222636. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:16:13,554][00753] Avg episode reward: [(0, '4.876')]
[2023-06-19 14:16:16,872][15725] Updated weights for policy 0, policy_version 220 (0.0039)
[2023-06-19 14:16:18,549][00753] Fps is (10 sec: 3686.3, 60 sec: 3686.4, 300 sec: 3481.6). Total num frames: 905216. Throughput: 0: 887.2. Samples: 226920. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:16:18,551][00753] Avg episode reward: [(0, '4.941')]
[2023-06-19 14:16:18,554][15712] Saving new best policy, reward=4.941!
[2023-06-19 14:16:23,549][00753] Fps is (10 sec: 2867.8, 60 sec: 3618.1, 300 sec: 3462.3). Total num frames: 917504. Throughput: 0: 886.1. Samples: 228962. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-06-19 14:16:23,551][00753] Avg episode reward: [(0, '4.965')]
[2023-06-19 14:16:23,571][15712] Saving new best policy, reward=4.965!
[2023-06-19 14:16:28,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3474.0). Total num frames: 937984. Throughput: 0: 906.7. Samples: 234122. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-06-19 14:16:28,551][00753] Avg episode reward: [(0, '5.020')]
[2023-06-19 14:16:28,554][15712] Saving new best policy, reward=5.020!
[2023-06-19 14:16:29,550][15725] Updated weights for policy 0, policy_version 230 (0.0033)
[2023-06-19 14:16:33,552][00753] Fps is (10 sec: 4094.8, 60 sec: 3549.7, 300 sec: 3485.3). Total num frames: 958464. Throughput: 0: 898.8. Samples: 240456. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:16:33,555][00753] Avg episode reward: [(0, '4.905')]
[2023-06-19 14:16:38,549][00753] Fps is (10 sec: 3686.5, 60 sec: 3618.2, 300 sec: 3481.6). Total num frames: 974848. Throughput: 0: 873.1. Samples: 242636. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:16:38,553][00753] Avg episode reward: [(0, '4.889')]
[2023-06-19 14:16:41,209][15725] Updated weights for policy 0, policy_version 240 (0.0027)
[2023-06-19 14:16:43,551][00753] Fps is (10 sec: 2867.5, 60 sec: 3549.7, 300 sec: 3463.6). Total num frames: 987136. Throughput: 0: 868.8. Samples: 247098. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:16:43,556][00753] Avg episode reward: [(0, '4.894')]
[2023-06-19 14:16:48,549][00753] Fps is (10 sec: 3686.2, 60 sec: 3618.1, 300 sec: 3488.7). Total num frames: 1011712. Throughput: 0: 912.6. Samples: 253566. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:16:48,554][00753] Avg episode reward: [(0, '5.113')]
[2023-06-19 14:16:48,562][15712] Saving new best policy, reward=5.113!
[2023-06-19 14:16:51,108][15725] Updated weights for policy 0, policy_version 250 (0.0024)
[2023-06-19 14:16:53,549][00753] Fps is (10 sec: 4506.6, 60 sec: 3618.1, 300 sec: 3499.0). Total num frames: 1032192. Throughput: 0: 910.2. Samples: 256882. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:16:53,559][00753] Avg episode reward: [(0, '5.085')]
[2023-06-19 14:16:58,549][00753] Fps is (10 sec: 3686.6, 60 sec: 3618.1, 300 sec: 3554.5). Total num frames: 1048576. Throughput: 0: 877.2. Samples: 262106. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:16:58,552][00753] Avg episode reward: [(0, '5.168')]
[2023-06-19 14:16:58,558][15712] Saving new best policy, reward=5.168!
[2023-06-19 14:17:03,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3596.1). Total num frames: 1060864. Throughput: 0: 875.8. Samples: 266332. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:17:03,554][00753] Avg episode reward: [(0, '5.222')]
[2023-06-19 14:17:03,562][15712] Saving new best policy, reward=5.222!
[2023-06-19 14:17:04,022][15725] Updated weights for policy 0, policy_version 260 (0.0022)
[2023-06-19 14:17:08,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3665.6). Total num frames: 1085440. Throughput: 0: 903.7. Samples: 269628. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:17:08,555][00753] Avg episode reward: [(0, '5.602')]
[2023-06-19 14:17:08,561][15712] Saving new best policy, reward=5.602!
[2023-06-19 14:17:12,955][15725] Updated weights for policy 0, policy_version 270 (0.0015)
[2023-06-19 14:17:13,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3618.3, 300 sec: 3679.5). Total num frames: 1105920. Throughput: 0: 942.3. Samples: 276526. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:17:13,551][00753] Avg episode reward: [(0, '5.298')]
[2023-06-19 14:17:18,549][00753] Fps is (10 sec: 3686.3, 60 sec: 3618.1, 300 sec: 3665.6). Total num frames: 1122304. Throughput: 0: 908.5. Samples: 281338. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:17:18,551][00753] Avg episode reward: [(0, '5.483')]
[2023-06-19 14:17:23,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3637.8). Total num frames: 1134592. Throughput: 0: 908.1. Samples: 283500. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:17:23,555][00753] Avg episode reward: [(0, '5.635')]
[2023-06-19 14:17:23,569][15712] Saving new best policy, reward=5.635!
[2023-06-19 14:17:25,750][15725] Updated weights for policy 0, policy_version 280 (0.0024)
[2023-06-19 14:17:28,549][00753] Fps is (10 sec: 3686.5, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1159168. Throughput: 0: 938.5. Samples: 289328. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:17:28,557][00753] Avg episode reward: [(0, '5.970')]
[2023-06-19 14:17:28,561][15712] Saving new best policy, reward=5.970!
[2023-06-19 14:17:33,550][00753] Fps is (10 sec: 4505.1, 60 sec: 3686.5, 300 sec: 3679.4). Total num frames: 1179648. Throughput: 0: 946.8. Samples: 296174. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:17:33,555][00753] Avg episode reward: [(0, '5.947')]
[2023-06-19 14:17:33,568][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000288_1179648.pth...
[2023-06-19 14:17:33,725][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000073_299008.pth
[2023-06-19 14:17:35,383][15725] Updated weights for policy 0, policy_version 290 (0.0012)
[2023-06-19 14:17:38,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 1196032. Throughput: 0: 921.2. Samples: 298338. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:17:38,555][00753] Avg episode reward: [(0, '5.886')]
[2023-06-19 14:17:43,549][00753] Fps is (10 sec: 2867.5, 60 sec: 3686.5, 300 sec: 3637.8). Total num frames: 1208320. Throughput: 0: 898.4. Samples: 302536. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-06-19 14:17:43,551][00753] Avg episode reward: [(0, '5.922')]
[2023-06-19 14:17:47,180][15725] Updated weights for policy 0, policy_version 300 (0.0012)
[2023-06-19 14:17:48,549][00753] Fps is (10 sec: 3686.3, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1232896. Throughput: 0: 948.3. Samples: 309006. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:17:48,555][00753] Avg episode reward: [(0, '6.287')]
[2023-06-19 14:17:48,560][15712] Saving new best policy, reward=6.287!
[2023-06-19 14:17:53,551][00753] Fps is (10 sec: 4914.2, 60 sec: 3754.5, 300 sec: 3707.2). Total num frames: 1257472. Throughput: 0: 951.4. Samples: 312444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:17:53,556][00753] Avg episode reward: [(0, '6.755')]
[2023-06-19 14:17:53,564][15712] Saving new best policy, reward=6.755!
[2023-06-19 14:17:57,871][15725] Updated weights for policy 0, policy_version 310 (0.0021)
[2023-06-19 14:17:58,549][00753] Fps is (10 sec: 3686.5, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 1269760. Throughput: 0: 913.1. Samples: 317614. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-06-19 14:17:58,551][00753] Avg episode reward: [(0, '6.949')]
[2023-06-19 14:17:58,556][15712] Saving new best policy, reward=6.949!
[2023-06-19 14:18:03,549][00753] Fps is (10 sec: 2867.8, 60 sec: 3754.7, 300 sec: 3665.6). Total num frames: 1286144. Throughput: 0: 902.0. Samples: 321930. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-06-19 14:18:03,551][00753] Avg episode reward: [(0, '7.182')]
[2023-06-19 14:18:03,565][15712] Saving new best policy, reward=7.182!
[2023-06-19 14:18:08,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1306624. Throughput: 0: 927.5. Samples: 325236. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:18:08,551][00753] Avg episode reward: [(0, '7.397')]
[2023-06-19 14:18:08,557][15712] Saving new best policy, reward=7.397!
[2023-06-19 14:18:08,855][15725] Updated weights for policy 0, policy_version 320 (0.0015)
[2023-06-19 14:18:13,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3707.3). Total num frames: 1331200. Throughput: 0: 952.1. Samples: 332174. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:18:13,551][00753] Avg episode reward: [(0, '7.721')]
[2023-06-19 14:18:13,568][15712] Saving new best policy, reward=7.721!
[2023-06-19 14:18:18,551][00753] Fps is (10 sec: 3685.6, 60 sec: 3686.3, 300 sec: 3679.4). Total num frames: 1343488. Throughput: 0: 904.4. Samples: 336874. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:18:18,556][00753] Avg episode reward: [(0, '7.759')]
[2023-06-19 14:18:18,565][15712] Saving new best policy, reward=7.759!
[2023-06-19 14:18:20,572][15725] Updated weights for policy 0, policy_version 330 (0.0012)
[2023-06-19 14:18:23,549][00753] Fps is (10 sec: 2867.1, 60 sec: 3754.7, 300 sec: 3651.7). Total num frames: 1359872. Throughput: 0: 901.9. Samples: 338922. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:18:23,553][00753] Avg episode reward: [(0, '7.919')]
[2023-06-19 14:18:23,571][15712] Saving new best policy, reward=7.919!
[2023-06-19 14:18:28,549][00753] Fps is (10 sec: 3687.1, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1380352. Throughput: 0: 937.2. Samples: 344708. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:18:28,556][00753] Avg episode reward: [(0, '7.680')]
[2023-06-19 14:18:30,848][15725] Updated weights for policy 0, policy_version 340 (0.0029)
[2023-06-19 14:18:33,549][00753] Fps is (10 sec: 4096.1, 60 sec: 3686.5, 300 sec: 3693.3). Total num frames: 1400832. Throughput: 0: 948.0. Samples: 351666. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:18:33,551][00753] Avg episode reward: [(0, '7.957')]
[2023-06-19 14:18:33,620][15712] Saving new best policy, reward=7.957!
[2023-06-19 14:18:38,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 1417216. Throughput: 0: 922.4. Samples: 353950. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:18:38,555][00753] Avg episode reward: [(0, '8.508')]
[2023-06-19 14:18:38,557][15712] Saving new best policy, reward=8.508!
[2023-06-19 14:18:43,506][15725] Updated weights for policy 0, policy_version 350 (0.0011)
[2023-06-19 14:18:43,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3665.6). Total num frames: 1433600. Throughput: 0: 901.3. Samples: 358172. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:18:43,553][00753] Avg episode reward: [(0, '8.359')]
[2023-06-19 14:18:48,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1454080. Throughput: 0: 942.8. Samples: 364354. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:18:48,557][00753] Avg episode reward: [(0, '8.789')]
[2023-06-19 14:18:48,560][15712] Saving new best policy, reward=8.789!
[2023-06-19 14:18:52,602][15725] Updated weights for policy 0, policy_version 360 (0.0012)
[2023-06-19 14:18:53,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3686.5, 300 sec: 3693.4). Total num frames: 1478656. Throughput: 0: 944.8. Samples: 367750. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:18:53,555][00753] Avg episode reward: [(0, '9.441')]
[2023-06-19 14:18:53,565][15712] Saving new best policy, reward=9.441!
[2023-06-19 14:18:58,549][00753] Fps is (10 sec: 3686.5, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 1490944. Throughput: 0: 911.6. Samples: 373196. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:18:58,552][00753] Avg episode reward: [(0, '10.522')]
[2023-06-19 14:18:58,559][15712] Saving new best policy, reward=10.522!
[2023-06-19 14:19:03,551][00753] Fps is (10 sec: 2867.1, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1507328. Throughput: 0: 902.2. Samples: 377470. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:19:03,559][00753] Avg episode reward: [(0, '10.809')]
[2023-06-19 14:19:03,574][15712] Saving new best policy, reward=10.809!
[2023-06-19 14:19:05,541][15725] Updated weights for policy 0, policy_version 370 (0.0017)
[2023-06-19 14:19:08,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1527808. Throughput: 0: 921.6. Samples: 380394. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:19:08,551][00753] Avg episode reward: [(0, '11.409')]
[2023-06-19 14:19:08,554][15712] Saving new best policy, reward=11.409!
[2023-06-19 14:19:13,549][00753] Fps is (10 sec: 4096.2, 60 sec: 3618.1, 300 sec: 3679.5). Total num frames: 1548288. Throughput: 0: 945.1. Samples: 387238. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:19:13,551][00753] Avg episode reward: [(0, '10.759')]
[2023-06-19 14:19:14,763][15725] Updated weights for policy 0, policy_version 380 (0.0015)
[2023-06-19 14:19:18,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.5, 300 sec: 3679.5). Total num frames: 1564672. Throughput: 0: 906.5. Samples: 392460. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:19:18,553][00753] Avg episode reward: [(0, '10.834')]
[2023-06-19 14:19:23,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1581056. Throughput: 0: 904.3. Samples: 394642. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:19:23,551][00753] Avg episode reward: [(0, '11.892')]
[2023-06-19 14:19:23,564][15712] Saving new best policy, reward=11.892!
[2023-06-19 14:19:27,241][15725] Updated weights for policy 0, policy_version 390 (0.0029)
[2023-06-19 14:19:28,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1601536. Throughput: 0: 934.3. Samples: 400214. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:19:28,551][00753] Avg episode reward: [(0, '12.358')]
[2023-06-19 14:19:28,558][15712] Saving new best policy, reward=12.358!
[2023-06-19 14:19:33,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 1622016. Throughput: 0: 949.3. Samples: 407074. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:19:33,552][00753] Avg episode reward: [(0, '12.535')]
[2023-06-19 14:19:33,568][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000397_1626112.pth...
[2023-06-19 14:19:33,673][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000182_745472.pth
[2023-06-19 14:19:33,687][15712] Saving new best policy, reward=12.535!
[2023-06-19 14:19:37,498][15725] Updated weights for policy 0, policy_version 400 (0.0040)
[2023-06-19 14:19:38,550][00753] Fps is (10 sec: 3685.9, 60 sec: 3686.3, 300 sec: 3679.4). Total num frames: 1638400. Throughput: 0: 926.7. Samples: 409452. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:19:38,553][00753] Avg episode reward: [(0, '12.930')]
[2023-06-19 14:19:38,557][15712] Saving new best policy, reward=12.930!
[2023-06-19 14:19:43,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1654784. Throughput: 0: 901.6. Samples: 413768. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:19:43,553][00753] Avg episode reward: [(0, '13.460')]
[2023-06-19 14:19:43,568][15712] Saving new best policy, reward=13.460!
[2023-06-19 14:19:48,549][00753] Fps is (10 sec: 3686.9, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1675264. Throughput: 0: 942.2. Samples: 419870. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-06-19 14:19:48,553][00753] Avg episode reward: [(0, '13.915')]
[2023-06-19 14:19:48,561][15712] Saving new best policy, reward=13.915!
[2023-06-19 14:19:49,080][15725] Updated weights for policy 0, policy_version 410 (0.0030)
[2023-06-19 14:19:53,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 1699840. Throughput: 0: 953.1. Samples: 423282. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:19:53,551][00753] Avg episode reward: [(0, '14.676')]
[2023-06-19 14:19:53,560][15712] Saving new best policy, reward=14.676!
[2023-06-19 14:19:58,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 1716224. Throughput: 0: 923.9. Samples: 428812. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:19:58,553][00753] Avg episode reward: [(0, '14.714')]
[2023-06-19 14:19:58,557][15712] Saving new best policy, reward=14.714!
[2023-06-19 14:19:59,953][15725] Updated weights for policy 0, policy_version 420 (0.0023)
[2023-06-19 14:20:03,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1728512. Throughput: 0: 906.0. Samples: 433232. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:20:03,558][00753] Avg episode reward: [(0, '14.795')]
[2023-06-19 14:20:03,567][15712] Saving new best policy, reward=14.795!
[2023-06-19 14:20:08,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1748992. Throughput: 0: 918.4. Samples: 435972. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:20:08,551][00753] Avg episode reward: [(0, '14.436')]
[2023-06-19 14:20:10,658][15725] Updated weights for policy 0, policy_version 430 (0.0012)
[2023-06-19 14:20:13,549][00753] Fps is (10 sec: 4505.5, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 1773568. Throughput: 0: 949.2. Samples: 442926. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:20:13,551][00753] Avg episode reward: [(0, '14.408')]
[2023-06-19 14:20:18,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 1789952. Throughput: 0: 915.9. Samples: 448290. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:20:18,555][00753] Avg episode reward: [(0, '14.170')]
[2023-06-19 14:20:22,322][15725] Updated weights for policy 0, policy_version 440 (0.0017)
[2023-06-19 14:20:23,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1802240. Throughput: 0: 910.7. Samples: 450434. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:20:23,558][00753] Avg episode reward: [(0, '14.235')]
[2023-06-19 14:20:28,549][00753] Fps is (10 sec: 3276.9, 60 sec: 3686.4, 300 sec: 3651.7). Total num frames: 1822720. Throughput: 0: 932.1. Samples: 455712. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:20:28,554][00753] Avg episode reward: [(0, '15.125')]
[2023-06-19 14:20:28,559][15712] Saving new best policy, reward=15.125!
[2023-06-19 14:20:32,398][15725] Updated weights for policy 0, policy_version 450 (0.0021)
[2023-06-19 14:20:33,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 1847296. Throughput: 0: 949.4. Samples: 462594. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:20:33,557][00753] Avg episode reward: [(0, '14.947')]
[2023-06-19 14:20:38,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.8, 300 sec: 3693.3). Total num frames: 1863680. Throughput: 0: 935.8. Samples: 465392. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:20:38,554][00753] Avg episode reward: [(0, '15.479')]
[2023-06-19 14:20:38,563][15712] Saving new best policy, reward=15.479!
[2023-06-19 14:20:43,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1875968. Throughput: 0: 906.8. Samples: 469620. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:20:43,553][00753] Avg episode reward: [(0, '14.941')]
[2023-06-19 14:20:45,104][15725] Updated weights for policy 0, policy_version 460 (0.0024)
[2023-06-19 14:20:48,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3679.5). Total num frames: 1900544. Throughput: 0: 940.4. Samples: 475548. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:20:48,554][00753] Avg episode reward: [(0, '16.035')]
[2023-06-19 14:20:48,557][15712] Saving new best policy, reward=16.035!
[2023-06-19 14:20:53,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 1921024. Throughput: 0: 953.5. Samples: 478878. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:20:53,551][00753] Avg episode reward: [(0, '16.908')]
[2023-06-19 14:20:53,560][15712] Saving new best policy, reward=16.908!
[2023-06-19 14:20:53,975][15725] Updated weights for policy 0, policy_version 470 (0.0018)
[2023-06-19 14:20:58,552][00753] Fps is (10 sec: 3685.1, 60 sec: 3686.2, 300 sec: 3707.2). Total num frames: 1937408. Throughput: 0: 930.4. Samples: 484798. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:20:58,558][00753] Avg episode reward: [(0, '17.941')]
[2023-06-19 14:20:58,560][15712] Saving new best policy, reward=17.941!
[2023-06-19 14:21:03,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3679.5). Total num frames: 1953792. Throughput: 0: 904.8. Samples: 489004. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:21:03,553][00753] Avg episode reward: [(0, '17.809')]
[2023-06-19 14:21:06,862][15725] Updated weights for policy 0, policy_version 480 (0.0031)
[2023-06-19 14:21:08,549][00753] Fps is (10 sec: 3277.9, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 1970176. Throughput: 0: 914.3. Samples: 491576. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:21:08,556][00753] Avg episode reward: [(0, '17.267')]
[2023-06-19 14:21:13,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 1994752. Throughput: 0: 948.5. Samples: 498396. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:21:13,554][00753] Avg episode reward: [(0, '16.821')]
[2023-06-19 14:21:15,876][15725] Updated weights for policy 0, policy_version 490 (0.0017)
[2023-06-19 14:21:18,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2011136. Throughput: 0: 923.1. Samples: 504132. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:21:18,551][00753] Avg episode reward: [(0, '17.097')]
[2023-06-19 14:21:23,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 2027520. Throughput: 0: 908.7. Samples: 506284. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:21:23,551][00753] Avg episode reward: [(0, '16.392')]
[2023-06-19 14:21:28,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3693.4). Total num frames: 2048000. Throughput: 0: 925.6. Samples: 511272. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:21:28,552][15725] Updated weights for policy 0, policy_version 500 (0.0012)
[2023-06-19 14:21:28,550][00753] Avg episode reward: [(0, '18.095')]
[2023-06-19 14:21:28,562][15712] Saving new best policy, reward=18.095!
[2023-06-19 14:21:33,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2068480. Throughput: 0: 945.6. Samples: 518098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:21:33,554][00753] Avg episode reward: [(0, '18.358')]
[2023-06-19 14:21:33,567][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000505_2068480.pth...
[2023-06-19 14:21:33,678][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000288_1179648.pth
[2023-06-19 14:21:33,685][15712] Saving new best policy, reward=18.358!
[2023-06-19 14:21:38,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 2084864. Throughput: 0: 938.0. Samples: 521088. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:21:38,551][00753] Avg episode reward: [(0, '20.300')]
[2023-06-19 14:21:38,564][15712] Saving new best policy, reward=20.300!
[2023-06-19 14:21:38,816][15725] Updated weights for policy 0, policy_version 510 (0.0032)
[2023-06-19 14:21:43,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 2101248. Throughput: 0: 899.4. Samples: 525266. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:21:43,556][00753] Avg episode reward: [(0, '19.890')]
[2023-06-19 14:21:48,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3679.5). Total num frames: 2117632. Throughput: 0: 924.3. Samples: 530596. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:21:48,554][00753] Avg episode reward: [(0, '20.911')]
[2023-06-19 14:21:48,556][15712] Saving new best policy, reward=20.911!
[2023-06-19 14:21:50,633][15725] Updated weights for policy 0, policy_version 520 (0.0020)
[2023-06-19 14:21:53,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2142208. Throughput: 0: 942.9. Samples: 534006. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:21:53,551][00753] Avg episode reward: [(0, '20.340')]
[2023-06-19 14:21:58,550][00753] Fps is (10 sec: 4095.6, 60 sec: 3686.5, 300 sec: 3721.1). Total num frames: 2158592. Throughput: 0: 931.3. Samples: 540306. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:21:58,552][00753] Avg episode reward: [(0, '20.661')]
[2023-06-19 14:22:01,536][15725] Updated weights for policy 0, policy_version 530 (0.0022)
[2023-06-19 14:22:03,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 2174976. Throughput: 0: 898.7. Samples: 544572. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:22:03,555][00753] Avg episode reward: [(0, '20.566')]
[2023-06-19 14:22:08,549][00753] Fps is (10 sec: 3277.2, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 2191360. Throughput: 0: 898.5. Samples: 546718. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:22:08,556][00753] Avg episode reward: [(0, '20.566')]
[2023-06-19 14:22:12,406][15725] Updated weights for policy 0, policy_version 540 (0.0014)
[2023-06-19 14:22:13,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2215936. Throughput: 0: 940.4. Samples: 553588. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:22:13,557][00753] Avg episode reward: [(0, '20.341')]
[2023-06-19 14:22:18,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 2232320. Throughput: 0: 922.7. Samples: 559618. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:22:18,554][00753] Avg episode reward: [(0, '20.097')]
[2023-06-19 14:22:23,549][00753] Fps is (10 sec: 3276.7, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 2248704. Throughput: 0: 901.9. Samples: 561672. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:22:23,555][00753] Avg episode reward: [(0, '19.525')]
[2023-06-19 14:22:24,055][15725] Updated weights for policy 0, policy_version 550 (0.0016)
[2023-06-19 14:22:28,550][00753] Fps is (10 sec: 3276.4, 60 sec: 3618.1, 300 sec: 3679.5). Total num frames: 2265088. Throughput: 0: 914.8. Samples: 566434. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-06-19 14:22:28,554][00753] Avg episode reward: [(0, '20.315')]
[2023-06-19 14:22:33,549][00753] Fps is (10 sec: 4096.1, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2289664. Throughput: 0: 949.5. Samples: 573322. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:22:33,552][00753] Avg episode reward: [(0, '19.414')]
[2023-06-19 14:22:34,035][15725] Updated weights for policy 0, policy_version 560 (0.0024)
[2023-06-19 14:22:38,549][00753] Fps is (10 sec: 4506.1, 60 sec: 3754.7, 300 sec: 3735.0). Total num frames: 2310144. Throughput: 0: 950.5. Samples: 576778. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:22:38,555][00753] Avg episode reward: [(0, '20.310')]
[2023-06-19 14:22:43,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 2322432. Throughput: 0: 907.2. Samples: 581128. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:22:43,553][00753] Avg episode reward: [(0, '20.931')]
[2023-06-19 14:22:43,567][15712] Saving new best policy, reward=20.931!
[2023-06-19 14:22:46,923][15725] Updated weights for policy 0, policy_version 570 (0.0023)
[2023-06-19 14:22:48,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3665.6). Total num frames: 2338816. Throughput: 0: 924.1. Samples: 586156. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:22:48,557][00753] Avg episode reward: [(0, '20.626')]
[2023-06-19 14:22:53,551][00753] Fps is (10 sec: 4095.1, 60 sec: 3686.3, 300 sec: 3707.2). Total num frames: 2363392. Throughput: 0: 953.1. Samples: 589610. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:22:53,553][00753] Avg episode reward: [(0, '19.179')]
[2023-06-19 14:22:55,696][15725] Updated weights for policy 0, policy_version 580 (0.0040)
[2023-06-19 14:22:58,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 2383872. Throughput: 0: 949.6. Samples: 596318. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:22:58,554][00753] Avg episode reward: [(0, '18.110')]
[2023-06-19 14:23:03,549][00753] Fps is (10 sec: 3687.2, 60 sec: 3754.7, 300 sec: 3707.2). Total num frames: 2400256. Throughput: 0: 909.9. Samples: 600564. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:03,556][00753] Avg episode reward: [(0, '18.247')]
[2023-06-19 14:23:08,363][15725] Updated weights for policy 0, policy_version 590 (0.0023)
[2023-06-19 14:23:08,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3679.5). Total num frames: 2416640. Throughput: 0: 913.3. Samples: 602772. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:23:08,551][00753] Avg episode reward: [(0, '18.553')]
[2023-06-19 14:23:13,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3707.3). Total num frames: 2437120. Throughput: 0: 956.2. Samples: 609464. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:23:13,551][00753] Avg episode reward: [(0, '20.628')]
[2023-06-19 14:23:17,184][15725] Updated weights for policy 0, policy_version 600 (0.0013)
[2023-06-19 14:23:18,550][00753] Fps is (10 sec: 4095.5, 60 sec: 3754.6, 300 sec: 3721.1). Total num frames: 2457600. Throughput: 0: 945.2. Samples: 615858. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:18,552][00753] Avg episode reward: [(0, '21.862')]
[2023-06-19 14:23:18,630][15712] Saving new best policy, reward=21.862!
[2023-06-19 14:23:23,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3707.2). Total num frames: 2473984. Throughput: 0: 915.7. Samples: 617986. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:23:23,557][00753] Avg episode reward: [(0, '22.522')]
[2023-06-19 14:23:23,575][15712] Saving new best policy, reward=22.522!
[2023-06-19 14:23:28,549][00753] Fps is (10 sec: 3277.2, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 2490368. Throughput: 0: 912.5. Samples: 622192. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:23:28,555][00753] Avg episode reward: [(0, '24.060')]
[2023-06-19 14:23:28,557][15712] Saving new best policy, reward=24.060!
[2023-06-19 14:23:30,128][15725] Updated weights for policy 0, policy_version 610 (0.0024)
[2023-06-19 14:23:33,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2510848. Throughput: 0: 952.6. Samples: 629022. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:33,554][00753] Avg episode reward: [(0, '23.716')]
[2023-06-19 14:23:33,626][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000614_2514944.pth...
[2023-06-19 14:23:33,740][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000397_1626112.pth
[2023-06-19 14:23:38,549][00753] Fps is (10 sec: 4095.9, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 2531328. Throughput: 0: 950.4. Samples: 632374. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:38,551][00753] Avg episode reward: [(0, '23.141')]
[2023-06-19 14:23:40,137][15725] Updated weights for policy 0, policy_version 620 (0.0024)
[2023-06-19 14:23:43,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3707.2). Total num frames: 2547712. Throughput: 0: 909.4. Samples: 637240. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:23:43,553][00753] Avg episode reward: [(0, '23.405')]
[2023-06-19 14:23:48,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3679.5). Total num frames: 2564096. Throughput: 0: 919.2. Samples: 641926. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:48,551][00753] Avg episode reward: [(0, '23.322')]
[2023-06-19 14:23:51,573][15725] Updated weights for policy 0, policy_version 630 (0.0020)
[2023-06-19 14:23:53,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.8, 300 sec: 3721.1). Total num frames: 2588672. Throughput: 0: 948.3. Samples: 645444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:53,552][00753] Avg episode reward: [(0, '22.911')]
[2023-06-19 14:23:58,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3735.0). Total num frames: 2609152. Throughput: 0: 953.2. Samples: 652360. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:23:58,553][00753] Avg episode reward: [(0, '23.911')]
[2023-06-19 14:24:02,120][15725] Updated weights for policy 0, policy_version 640 (0.0029)
[2023-06-19 14:24:03,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 2625536. Throughput: 0: 909.4. Samples: 656780. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:24:03,556][00753] Avg episode reward: [(0, '23.875')]
[2023-06-19 14:24:08,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 2637824. Throughput: 0: 910.4. Samples: 658952. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:24:08,553][00753] Avg episode reward: [(0, '23.861')]
[2023-06-19 14:24:13,158][15725] Updated weights for policy 0, policy_version 650 (0.0026)
[2023-06-19 14:24:13,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 2662400. Throughput: 0: 957.3. Samples: 665270. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:24:13,554][00753] Avg episode reward: [(0, '22.964')]
[2023-06-19 14:24:18,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3735.0). Total num frames: 2682880. Throughput: 0: 957.2. Samples: 672098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:24:18,551][00753] Avg episode reward: [(0, '24.281')]
[2023-06-19 14:24:18,554][15712] Saving new best policy, reward=24.281!
[2023-06-19 14:24:23,552][00753] Fps is (10 sec: 3685.2, 60 sec: 3754.5, 300 sec: 3721.1). Total num frames: 2699264. Throughput: 0: 930.1. Samples: 674230. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:24:23,555][00753] Avg episode reward: [(0, '24.904')]
[2023-06-19 14:24:23,571][15712] Saving new best policy, reward=24.904!
[2023-06-19 14:24:24,509][15725] Updated weights for policy 0, policy_version 660 (0.0019)
[2023-06-19 14:24:28,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3693.3). Total num frames: 2711552. Throughput: 0: 916.7. Samples: 678492. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:24:28,555][00753] Avg episode reward: [(0, '25.365')]
[2023-06-19 14:24:28,624][15712] Saving new best policy, reward=25.365!
[2023-06-19 14:24:33,549][00753] Fps is (10 sec: 3687.6, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 2736128. Throughput: 0: 954.4. Samples: 684872. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:24:33,553][00753] Avg episode reward: [(0, '25.712')]
[2023-06-19 14:24:33,567][15712] Saving new best policy, reward=25.712!
[2023-06-19 14:24:34,939][15725] Updated weights for policy 0, policy_version 670 (0.0015)
[2023-06-19 14:24:38,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3735.0). Total num frames: 2756608. Throughput: 0: 951.5. Samples: 688260. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:24:38,558][00753] Avg episode reward: [(0, '25.987')]
[2023-06-19 14:24:38,561][15712] Saving new best policy, reward=25.987!
[2023-06-19 14:24:43,550][00753] Fps is (10 sec: 3686.0, 60 sec: 3754.6, 300 sec: 3721.1). Total num frames: 2772992. Throughput: 0: 911.0. Samples: 693356. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-06-19 14:24:43,555][00753] Avg episode reward: [(0, '26.816')]
[2023-06-19 14:24:43,567][15712] Saving new best policy, reward=26.816!
[2023-06-19 14:24:47,293][15725] Updated weights for policy 0, policy_version 680 (0.0026)
[2023-06-19 14:24:48,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3679.5). Total num frames: 2785280. Throughput: 0: 911.0. Samples: 697774. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:24:48,559][00753] Avg episode reward: [(0, '26.980')]
[2023-06-19 14:24:48,612][15712] Saving new best policy, reward=26.980!
[2023-06-19 14:24:53,549][00753] Fps is (10 sec: 3686.8, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2809856. Throughput: 0: 933.1. Samples: 700942. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:24:53,551][00753] Avg episode reward: [(0, '25.967')]
[2023-06-19 14:24:56,664][15725] Updated weights for policy 0, policy_version 690 (0.0042)
[2023-06-19 14:24:58,549][00753] Fps is (10 sec: 4915.2, 60 sec: 3754.7, 300 sec: 3748.9). Total num frames: 2834432. Throughput: 0: 948.0. Samples: 707932. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:24:58,551][00753] Avg episode reward: [(0, '26.305')]
[2023-06-19 14:25:03,549][00753] Fps is (10 sec: 3686.3, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 2846720. Throughput: 0: 909.8. Samples: 713040. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:25:03,555][00753] Avg episode reward: [(0, '25.463')]
[2023-06-19 14:25:08,549][00753] Fps is (10 sec: 2867.0, 60 sec: 3754.6, 300 sec: 3693.3). Total num frames: 2863104. Throughput: 0: 910.6. Samples: 715204. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:25:08,552][00753] Avg episode reward: [(0, '26.561')]
[2023-06-19 14:25:09,222][15725] Updated weights for policy 0, policy_version 700 (0.0020)
[2023-06-19 14:25:13,549][00753] Fps is (10 sec: 3686.5, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 2883584. Throughput: 0: 944.7. Samples: 721002. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:25:13,553][00753] Avg episode reward: [(0, '24.632')]
[2023-06-19 14:25:17,882][15725] Updated weights for policy 0, policy_version 710 (0.0019)
[2023-06-19 14:25:18,554][00753] Fps is (10 sec: 4503.5, 60 sec: 3754.3, 300 sec: 3748.8). Total num frames: 2908160. Throughput: 0: 960.1. Samples: 728082. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:25:18,557][00753] Avg episode reward: [(0, '25.128')]
[2023-06-19 14:25:23,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.9, 300 sec: 3735.0). Total num frames: 2924544. Throughput: 0: 942.0. Samples: 730652. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:25:23,557][00753] Avg episode reward: [(0, '26.490')]
[2023-06-19 14:25:28,549][00753] Fps is (10 sec: 2868.7, 60 sec: 3754.7, 300 sec: 3693.3). Total num frames: 2936832. Throughput: 0: 925.0. Samples: 734980. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:25:28,552][00753] Avg episode reward: [(0, '25.926')]
[2023-06-19 14:25:30,767][15725] Updated weights for policy 0, policy_version 720 (0.0015)
[2023-06-19 14:25:33,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 2961408. Throughput: 0: 960.0. Samples: 740972. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:25:33,557][00753] Avg episode reward: [(0, '26.396')]
[2023-06-19 14:25:33,569][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000723_2961408.pth...
[2023-06-19 14:25:33,682][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000505_2068480.pth
[2023-06-19 14:25:38,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3748.9). Total num frames: 2981888. Throughput: 0: 966.6. Samples: 744438. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:25:38,551][00753] Avg episode reward: [(0, '26.917')]
[2023-06-19 14:25:39,966][15725] Updated weights for policy 0, policy_version 730 (0.0018)
[2023-06-19 14:25:43,549][00753] Fps is (10 sec: 3686.3, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 2998272. Throughput: 0: 934.6. Samples: 749990. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:25:43,551][00753] Avg episode reward: [(0, '27.643')]
[2023-06-19 14:25:43,566][15712] Saving new best policy, reward=27.643!
[2023-06-19 14:25:48,549][00753] Fps is (10 sec: 3276.7, 60 sec: 3822.9, 300 sec: 3707.2). Total num frames: 3014656. Throughput: 0: 914.7. Samples: 754202. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:25:48,553][00753] Avg episode reward: [(0, '26.404')]
[2023-06-19 14:25:52,564][15725] Updated weights for policy 0, policy_version 740 (0.0031)
[2023-06-19 14:25:53,549][00753] Fps is (10 sec: 3686.5, 60 sec: 3754.7, 300 sec: 3721.2). Total num frames: 3035136. Throughput: 0: 931.7. Samples: 757128. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:25:53,555][00753] Avg episode reward: [(0, '25.247')]
[2023-06-19 14:25:58,549][00753] Fps is (10 sec: 4096.2, 60 sec: 3686.4, 300 sec: 3735.0). Total num frames: 3055616. Throughput: 0: 958.3. Samples: 764124. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:25:58,551][00753] Avg episode reward: [(0, '24.583')]
[2023-06-19 14:26:02,437][15725] Updated weights for policy 0, policy_version 750 (0.0018)
[2023-06-19 14:26:03,553][00753] Fps is (10 sec: 3684.9, 60 sec: 3754.4, 300 sec: 3734.9). Total num frames: 3072000. Throughput: 0: 919.1. Samples: 769442. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:26:03,560][00753] Avg episode reward: [(0, '23.439')]
[2023-06-19 14:26:08,549][00753] Fps is (10 sec: 3276.7, 60 sec: 3754.7, 300 sec: 3707.2). Total num frames: 3088384. Throughput: 0: 909.7. Samples: 771588. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:26:08,557][00753] Avg episode reward: [(0, '23.079')]
[2023-06-19 14:26:13,549][00753] Fps is (10 sec: 3687.9, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 3108864. Throughput: 0: 933.6. Samples: 776994. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:26:13,551][00753] Avg episode reward: [(0, '22.671')]
[2023-06-19 14:26:14,083][15725] Updated weights for policy 0, policy_version 760 (0.0023)
[2023-06-19 14:26:18,549][00753] Fps is (10 sec: 4505.6, 60 sec: 3755.0, 300 sec: 3748.9). Total num frames: 3133440. Throughput: 0: 955.6. Samples: 783974. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:26:18,551][00753] Avg episode reward: [(0, '22.104')]
[2023-06-19 14:26:23,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3735.0). Total num frames: 3149824. Throughput: 0: 942.7. Samples: 786860. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:26:23,551][00753] Avg episode reward: [(0, '22.932')]
[2023-06-19 14:26:24,534][15725] Updated weights for policy 0, policy_version 770 (0.0028)
[2023-06-19 14:26:28,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3754.7, 300 sec: 3707.2). Total num frames: 3162112. Throughput: 0: 915.8. Samples: 791202. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:26:28,554][00753] Avg episode reward: [(0, '23.194')]
[2023-06-19 14:26:33,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 3182592. Throughput: 0: 945.4. Samples: 796746. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:26:33,556][00753] Avg episode reward: [(0, '24.083')]
[2023-06-19 14:26:35,617][15725] Updated weights for policy 0, policy_version 780 (0.0019)
[2023-06-19 14:26:38,549][00753] Fps is (10 sec: 4505.7, 60 sec: 3754.7, 300 sec: 3748.9). Total num frames: 3207168. Throughput: 0: 954.8. Samples: 800094. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:26:38,551][00753] Avg episode reward: [(0, '25.015')]
[2023-06-19 14:26:43,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3748.9). Total num frames: 3223552. Throughput: 0: 931.2. Samples: 806028. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:26:43,554][00753] Avg episode reward: [(0, '25.565')]
[2023-06-19 14:26:47,089][15725] Updated weights for policy 0, policy_version 790 (0.0024)
[2023-06-19 14:26:48,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3721.1). Total num frames: 3239936. Throughput: 0: 909.1. Samples: 810348. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:26:48,554][00753] Avg episode reward: [(0, '26.374')]
[2023-06-19 14:26:53,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3721.1). Total num frames: 3256320. Throughput: 0: 917.5. Samples: 812876. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
[2023-06-19 14:26:53,552][00753] Avg episode reward: [(0, '26.270')]
[2023-06-19 14:26:57,599][15725] Updated weights for policy 0, policy_version 800 (0.0023)
[2023-06-19 14:26:58,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3735.0). Total num frames: 3276800. Throughput: 0: 941.8. Samples: 819376. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:26:58,551][00753] Avg episode reward: [(0, '26.020')]
[2023-06-19 14:27:03,549][00753] Fps is (10 sec: 4096.1, 60 sec: 3754.9, 300 sec: 3748.9). Total num frames: 3297280. Throughput: 0: 905.3. Samples: 824712. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:27:03,551][00753] Avg episode reward: [(0, '26.398')]
[2023-06-19 14:27:08,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3707.2). Total num frames: 3309568. Throughput: 0: 885.5. Samples: 826706. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:27:08,551][00753] Avg episode reward: [(0, '25.847')]
[2023-06-19 14:27:10,903][15725] Updated weights for policy 0, policy_version 810 (0.0028)
[2023-06-19 14:27:13,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3707.2). Total num frames: 3325952. Throughput: 0: 896.4. Samples: 831542. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:27:13,551][00753] Avg episode reward: [(0, '25.049')]
[2023-06-19 14:27:18,549][00753] Fps is (10 sec: 4095.9, 60 sec: 3618.1, 300 sec: 3735.0). Total num frames: 3350528. Throughput: 0: 921.3. Samples: 838206. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:27:18,552][00753] Avg episode reward: [(0, '23.905')]
[2023-06-19 14:27:20,181][15725] Updated weights for policy 0, policy_version 820 (0.0016)
[2023-06-19 14:27:23,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3735.0). Total num frames: 3366912. Throughput: 0: 912.2. Samples: 841144. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:27:23,552][00753] Avg episode reward: [(0, '22.080')]
[2023-06-19 14:27:28,549][00753] Fps is (10 sec: 2867.3, 60 sec: 3618.1, 300 sec: 3693.3). Total num frames: 3379200. Throughput: 0: 870.4. Samples: 845198. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:27:28,550][00753] Avg episode reward: [(0, '22.160')]
[2023-06-19 14:27:33,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3679.5). Total num frames: 3395584. Throughput: 0: 886.9. Samples: 850260. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:27:33,556][00753] Avg episode reward: [(0, '23.197')]
[2023-06-19 14:27:33,568][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000829_3395584.pth...
[2023-06-19 14:27:33,688][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000614_2514944.pth
[2023-06-19 14:27:33,811][15725] Updated weights for policy 0, policy_version 830 (0.0038)
[2023-06-19 14:27:38,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3721.1). Total num frames: 3420160. Throughput: 0: 903.5. Samples: 853532. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:27:38,551][00753] Avg episode reward: [(0, '24.463')]
[2023-06-19 14:27:43,549][00753] Fps is (10 sec: 4095.9, 60 sec: 3549.8, 300 sec: 3721.1). Total num frames: 3436544. Throughput: 0: 891.9. Samples: 859512. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-06-19 14:27:43,557][00753] Avg episode reward: [(0, '24.208')]
[2023-06-19 14:27:44,183][15725] Updated weights for policy 0, policy_version 840 (0.0018)
[2023-06-19 14:27:48,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3679.5). Total num frames: 3448832. Throughput: 0: 858.9. Samples: 863362. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:27:48,554][00753] Avg episode reward: [(0, '24.357')]
[2023-06-19 14:27:53,549][00753] Fps is (10 sec: 2867.3, 60 sec: 3481.6, 300 sec: 3665.6). Total num frames: 3465216. Throughput: 0: 860.0. Samples: 865408. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:27:53,551][00753] Avg episode reward: [(0, '24.807')]
[2023-06-19 14:27:56,880][15725] Updated weights for policy 0, policy_version 850 (0.0036)
[2023-06-19 14:27:58,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3679.5). Total num frames: 3485696. Throughput: 0: 886.2. Samples: 871422. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:27:58,551][00753] Avg episode reward: [(0, '26.831')]
[2023-06-19 14:28:03,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3481.6, 300 sec: 3693.3). Total num frames: 3506176. Throughput: 0: 871.5. Samples: 877424. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:03,556][00753] Avg episode reward: [(0, '24.616')]
[2023-06-19 14:28:08,553][00753] Fps is (10 sec: 3275.4, 60 sec: 3481.4, 300 sec: 3665.5). Total num frames: 3518464. Throughput: 0: 850.9. Samples: 879436. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:08,558][00753] Avg episode reward: [(0, '23.077')]
[2023-06-19 14:28:09,151][15725] Updated weights for policy 0, policy_version 860 (0.0025)
[2023-06-19 14:28:13,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3651.7). Total num frames: 3534848. Throughput: 0: 850.8. Samples: 883482. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:13,551][00753] Avg episode reward: [(0, '23.620')]
[2023-06-19 14:28:18,549][00753] Fps is (10 sec: 3687.9, 60 sec: 3413.3, 300 sec: 3665.6). Total num frames: 3555328. Throughput: 0: 877.3. Samples: 889738. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:18,559][00753] Avg episode reward: [(0, '24.873')]
[2023-06-19 14:28:19,918][15725] Updated weights for policy 0, policy_version 870 (0.0017)
[2023-06-19 14:28:23,551][00753] Fps is (10 sec: 4095.2, 60 sec: 3481.5, 300 sec: 3679.4). Total num frames: 3575808. Throughput: 0: 879.1. Samples: 893092. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:28:23,553][00753] Avg episode reward: [(0, '24.180')]
[2023-06-19 14:28:28,549][00753] Fps is (10 sec: 3276.9, 60 sec: 3481.6, 300 sec: 3651.7). Total num frames: 3588096. Throughput: 0: 850.4. Samples: 897782. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:28:28,556][00753] Avg episode reward: [(0, '24.184')]
[2023-06-19 14:28:33,462][15725] Updated weights for policy 0, policy_version 880 (0.0012)
[2023-06-19 14:28:33,549][00753] Fps is (10 sec: 2867.7, 60 sec: 3481.6, 300 sec: 3637.8). Total num frames: 3604480. Throughput: 0: 851.5. Samples: 901678. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:28:33,556][00753] Avg episode reward: [(0, '24.410')]
[2023-06-19 14:28:38,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3413.3, 300 sec: 3651.7). Total num frames: 3624960. Throughput: 0: 871.8. Samples: 904640. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:28:38,552][00753] Avg episode reward: [(0, '25.314')]
[2023-06-19 14:28:43,296][15725] Updated weights for policy 0, policy_version 890 (0.0020)
[2023-06-19 14:28:43,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3481.6, 300 sec: 3665.6). Total num frames: 3645440. Throughput: 0: 878.7. Samples: 910964. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:43,556][00753] Avg episode reward: [(0, '24.791')]
[2023-06-19 14:28:48,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3481.6, 300 sec: 3623.9). Total num frames: 3657728. Throughput: 0: 848.1. Samples: 915590. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:48,551][00753] Avg episode reward: [(0, '23.805')]
[2023-06-19 14:28:53,549][00753] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3610.0). Total num frames: 3674112. Throughput: 0: 849.8. Samples: 917674. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:28:53,552][00753] Avg episode reward: [(0, '24.707')]
[2023-06-19 14:28:56,371][15725] Updated weights for policy 0, policy_version 900 (0.0060)
[2023-06-19 14:28:58,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3623.9). Total num frames: 3694592. Throughput: 0: 884.7. Samples: 923292. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:28:58,551][00753] Avg episode reward: [(0, '24.907')]
[2023-06-19 14:29:03,549][00753] Fps is (10 sec: 4095.9, 60 sec: 3481.6, 300 sec: 3651.7). Total num frames: 3715072. Throughput: 0: 898.5. Samples: 930170. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:29:03,553][00753] Avg episode reward: [(0, '23.733')]
[2023-06-19 14:29:06,068][15725] Updated weights for policy 0, policy_version 910 (0.0025)
[2023-06-19 14:29:08,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3550.1, 300 sec: 3623.9). Total num frames: 3731456. Throughput: 0: 876.2. Samples: 932518. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:29:08,552][00753] Avg episode reward: [(0, '23.744')]
[2023-06-19 14:29:13,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3610.0). Total num frames: 3747840. Throughput: 0: 867.5. Samples: 936818. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:29:13,556][00753] Avg episode reward: [(0, '25.003')]
[2023-06-19 14:29:18,308][15725] Updated weights for policy 0, policy_version 920 (0.0016)
[2023-06-19 14:29:18,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3624.0). Total num frames: 3768320. Throughput: 0: 912.9. Samples: 942760. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:29:18,551][00753] Avg episode reward: [(0, '26.885')]
[2023-06-19 14:29:23,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3550.0, 300 sec: 3651.7). Total num frames: 3788800. Throughput: 0: 922.8. Samples: 946164. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:29:23,551][00753] Avg episode reward: [(0, '26.821')]
[2023-06-19 14:29:28,551][00753] Fps is (10 sec: 3685.7, 60 sec: 3618.0, 300 sec: 3623.9). Total num frames: 3805184. Throughput: 0: 905.7. Samples: 951722. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:29:28,558][00753] Avg episode reward: [(0, '26.204')]
[2023-06-19 14:29:29,146][15725] Updated weights for policy 0, policy_version 930 (0.0015)
[2023-06-19 14:29:33,549][00753] Fps is (10 sec: 3276.7, 60 sec: 3618.1, 300 sec: 3610.0). Total num frames: 3821568. Throughput: 0: 897.5. Samples: 955980. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:29:33,552][00753] Avg episode reward: [(0, '26.791')]
[2023-06-19 14:29:33,567][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000933_3821568.pth...
[2023-06-19 14:29:33,771][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000723_2961408.pth
[2023-06-19 14:29:38,549][00753] Fps is (10 sec: 3687.1, 60 sec: 3618.1, 300 sec: 3623.9). Total num frames: 3842048. Throughput: 0: 913.5. Samples: 958782. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:29:38,550][00753] Avg episode reward: [(0, '26.335')]
[2023-06-19 14:29:40,204][15725] Updated weights for policy 0, policy_version 940 (0.0014)
[2023-06-19 14:29:43,549][00753] Fps is (10 sec: 4096.1, 60 sec: 3618.1, 300 sec: 3651.7). Total num frames: 3862528. Throughput: 0: 940.5. Samples: 965614. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:29:43,560][00753] Avg episode reward: [(0, '24.612')]
[2023-06-19 14:29:48,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3623.9). Total num frames: 3878912. Throughput: 0: 904.0. Samples: 970850. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:29:48,555][00753] Avg episode reward: [(0, '24.456')]
[2023-06-19 14:29:51,972][15725] Updated weights for policy 0, policy_version 950 (0.0013)
[2023-06-19 14:29:53,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3596.1). Total num frames: 3895296. Throughput: 0: 898.0. Samples: 972926. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:29:53,553][00753] Avg episode reward: [(0, '24.337')]
[2023-06-19 14:29:58,549][00753] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3623.9). Total num frames: 3915776. Throughput: 0: 922.4. Samples: 978328. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:29:58,554][00753] Avg episode reward: [(0, '25.835')]
[2023-06-19 14:30:02,029][15725] Updated weights for policy 0, policy_version 960 (0.0026)
[2023-06-19 14:30:03,549][00753] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3637.8). Total num frames: 3936256. Throughput: 0: 942.3. Samples: 985164. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:30:03,551][00753] Avg episode reward: [(0, '25.912')]
[2023-06-19 14:30:08,554][00753] Fps is (10 sec: 3684.5, 60 sec: 3686.1, 300 sec: 3623.9). Total num frames: 3952640. Throughput: 0: 925.9. Samples: 987834. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-06-19 14:30:08,556][00753] Avg episode reward: [(0, '27.207')]
[2023-06-19 14:30:13,549][00753] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3596.2). Total num frames: 3969024. Throughput: 0: 898.0. Samples: 992132. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:30:13,557][00753] Avg episode reward: [(0, '27.661')]
[2023-06-19 14:30:13,567][15712] Saving new best policy, reward=27.661!
[2023-06-19 14:30:14,814][15725] Updated weights for policy 0, policy_version 970 (0.0025)
[2023-06-19 14:30:18,549][00753] Fps is (10 sec: 3688.3, 60 sec: 3686.4, 300 sec: 3610.0). Total num frames: 3989504. Throughput: 0: 932.0. Samples: 997918. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:30:18,557][00753] Avg episode reward: [(0, '29.371')]
[2023-06-19 14:30:18,560][15712] Saving new best policy, reward=29.371!
[2023-06-19 14:30:22,031][00753] Component Batcher_0 stopped!
[2023-06-19 14:30:22,029][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-06-19 14:30:22,056][15729] Stopping RolloutWorker_w3...
[2023-06-19 14:30:22,030][15712] Stopping Batcher_0...
[2023-06-19 14:30:22,057][00753] Component RolloutWorker_w3 stopped!
[2023-06-19 14:30:22,073][15712] Loop batcher_evt_loop terminating...
[2023-06-19 14:30:22,065][15729] Loop rollout_proc3_evt_loop terminating...
[2023-06-19 14:30:22,076][00753] Component RolloutWorker_w4 stopped!
[2023-06-19 14:30:22,080][00753] Component RolloutWorker_w5 stopped!
[2023-06-19 14:30:22,075][15731] Stopping RolloutWorker_w4...
[2023-06-19 14:30:22,085][15731] Loop rollout_proc4_evt_loop terminating...
[2023-06-19 14:30:22,077][15730] Stopping RolloutWorker_w5...
[2023-06-19 14:30:22,092][00753] Component RolloutWorker_w1 stopped!
[2023-06-19 14:30:22,091][15727] Stopping RolloutWorker_w1...
[2023-06-19 14:30:22,104][00753] Component RolloutWorker_w0 stopped!
[2023-06-19 14:30:22,107][15726] Stopping RolloutWorker_w0...
[2023-06-19 14:30:22,108][15726] Loop rollout_proc0_evt_loop terminating...
[2023-06-19 14:30:22,094][15730] Loop rollout_proc5_evt_loop terminating...
[2023-06-19 14:30:22,113][00753] Component RolloutWorker_w6 stopped!
[2023-06-19 14:30:22,118][15732] Stopping RolloutWorker_w6...
[2023-06-19 14:30:22,103][15727] Loop rollout_proc1_evt_loop terminating...
[2023-06-19 14:30:22,120][00753] Component RolloutWorker_w2 stopped!
[2023-06-19 14:30:22,125][15728] Stopping RolloutWorker_w2...
[2023-06-19 14:30:22,126][15728] Loop rollout_proc2_evt_loop terminating...
[2023-06-19 14:30:22,126][15732] Loop rollout_proc6_evt_loop terminating...
[2023-06-19 14:30:22,147][15733] Stopping RolloutWorker_w7...
[2023-06-19 14:30:22,147][00753] Component RolloutWorker_w7 stopped!
[2023-06-19 14:30:22,150][15733] Loop rollout_proc7_evt_loop terminating...
[2023-06-19 14:30:22,164][15725] Weights refcount: 2 0
[2023-06-19 14:30:22,169][15725] Stopping InferenceWorker_p0-w0...
[2023-06-19 14:30:22,172][15725] Loop inference_proc0-0_evt_loop terminating...
[2023-06-19 14:30:22,169][00753] Component InferenceWorker_p0-w0 stopped!
[2023-06-19 14:30:22,230][15712] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000829_3395584.pth
[2023-06-19 14:30:22,245][15712] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-06-19 14:30:22,371][15712] Stopping LearnerWorker_p0...
[2023-06-19 14:30:22,372][15712] Loop learner_proc0_evt_loop terminating...
[2023-06-19 14:30:22,370][00753] Component LearnerWorker_p0 stopped!
[2023-06-19 14:30:22,378][00753] Waiting for process learner_proc0 to stop...
[2023-06-19 14:30:24,169][00753] Waiting for process inference_proc0-0 to join...
[2023-06-19 14:30:24,176][00753] Waiting for process rollout_proc0 to join...
[2023-06-19 14:30:25,777][00753] Waiting for process rollout_proc1 to join...
[2023-06-19 14:30:26,139][00753] Waiting for process rollout_proc2 to join...
[2023-06-19 14:30:26,145][00753] Waiting for process rollout_proc3 to join...
[2023-06-19 14:30:26,146][00753] Waiting for process rollout_proc4 to join...
[2023-06-19 14:30:26,148][00753] Waiting for process rollout_proc5 to join...
[2023-06-19 14:30:26,149][00753] Waiting for process rollout_proc6 to join...
[2023-06-19 14:30:26,151][00753] Waiting for process rollout_proc7 to join...
[2023-06-19 14:30:26,153][00753] Batcher 0 profile tree view:
batching: 28.3181, releasing_batches: 0.0196
[2023-06-19 14:30:26,156][00753] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0001
  wait_policy_total: 481.4413
update_model: 8.0245
  weight_update: 0.0025
one_step: 0.0180
  handle_policy_step: 573.0894
    deserialize: 15.2663, stack: 3.0542, obs_to_device_normalize: 112.6684, forward: 311.2599, send_messages: 28.2131
    prepare_outputs: 76.1728
      to_cpu: 43.4564
[2023-06-19 14:30:26,161][00753] Learner 0 profile tree view:
misc: 0.0051, prepare_batch: 19.5693
train: 74.6204
  epoch_init: 0.0189, minibatch_init: 0.0090, losses_postprocess: 0.6263, kl_divergence: 0.6649, after_optimizer: 3.7719
  calculate_losses: 25.3343
    losses_init: 0.0046, forward_head: 1.2514, bptt_initial: 16.9429, tail: 1.0722, advantages_returns: 0.2578, losses: 3.4928
    bptt: 1.9604
      bptt_forward_core: 1.8777
  update: 43.5924
    clip: 32.7360
[2023-06-19 14:30:26,162][00753] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.3329, enqueue_policy_requests: 130.0667, env_step: 837.8421, overhead: 21.4076, complete_rollouts: 6.9483
save_policy_outputs: 19.2290
  split_output_tensors: 9.0097
[2023-06-19 14:30:26,164][00753] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.2819, enqueue_policy_requests: 131.4119, env_step: 834.9022, overhead: 21.4959, complete_rollouts: 6.7752
save_policy_outputs: 19.4500
  split_output_tensors: 9.4796
[2023-06-19 14:30:26,165][00753] Loop Runner_EvtLoop terminating...
[2023-06-19 14:30:26,167][00753] Runner profile tree view:
main_loop: 1130.5358
[2023-06-19 14:30:26,168][00753] Collected {0: 4005888}, FPS: 3543.4
[2023-06-19 14:30:38,058][00753] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-06-19 14:30:38,060][00753] Overriding arg 'num_workers' with value 1 passed from command line
[2023-06-19 14:30:38,062][00753] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-06-19 14:30:38,063][00753] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-06-19 14:30:38,066][00753] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-06-19 14:30:38,071][00753] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-06-19 14:30:38,074][00753] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2023-06-19 14:30:38,076][00753] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-06-19 14:30:38,078][00753] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2023-06-19 14:30:38,080][00753] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2023-06-19 14:30:38,084][00753] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-06-19 14:30:38,088][00753] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-06-19 14:30:38,089][00753] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-06-19 14:30:38,091][00753] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-06-19 14:30:38,094][00753] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-06-19 14:30:38,109][00753] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:30:38,111][00753] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:30:38,114][00753] RunningMeanStd input shape: (1,)
[2023-06-19 14:30:38,129][00753] ConvEncoder: input_channels=3
[2023-06-19 14:30:38,255][00753] Conv encoder output size: 512
[2023-06-19 14:30:38,257][00753] Policy head output size: 512
[2023-06-19 14:30:41,544][00753] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-06-19 14:30:43,145][00753] Num frames 100...
[2023-06-19 14:30:43,365][00753] Num frames 200...
[2023-06-19 14:30:43,617][00753] Num frames 300...
[2023-06-19 14:30:43,826][00753] Num frames 400...
[2023-06-19 14:30:44,044][00753] Num frames 500...
[2023-06-19 14:30:44,352][00753] Num frames 600...
[2023-06-19 14:30:44,695][00753] Num frames 700...
[2023-06-19 14:30:44,966][00753] Num frames 800...
[2023-06-19 14:30:45,217][00753] Num frames 900...
[2023-06-19 14:30:45,479][00753] Num frames 1000...
[2023-06-19 14:30:45,616][00753] Num frames 1100...
[2023-06-19 14:30:45,737][00753] Num frames 1200...
[2023-06-19 14:30:45,862][00753] Num frames 1300...
[2023-06-19 14:30:45,989][00753] Num frames 1400...
[2023-06-19 14:30:46,114][00753] Num frames 1500...
[2023-06-19 14:30:46,236][00753] Num frames 1600...
[2023-06-19 14:30:46,357][00753] Num frames 1700...
[2023-06-19 14:30:46,481][00753] Num frames 1800...
[2023-06-19 14:30:46,610][00753] Num frames 1900...
[2023-06-19 14:30:46,731][00753] Num frames 2000...
[2023-06-19 14:30:46,853][00753] Num frames 2100...
[2023-06-19 14:30:46,905][00753] Avg episode rewards: #0: 50.999, true rewards: #0: 21.000
[2023-06-19 14:30:46,908][00753] Avg episode reward: 50.999, avg true_objective: 21.000
[2023-06-19 14:30:47,025][00753] Num frames 2200...
[2023-06-19 14:30:47,149][00753] Num frames 2300...
[2023-06-19 14:30:47,271][00753] Num frames 2400...
[2023-06-19 14:30:47,395][00753] Num frames 2500...
[2023-06-19 14:30:47,517][00753] Num frames 2600...
[2023-06-19 14:30:47,646][00753] Num frames 2700...
[2023-06-19 14:30:47,772][00753] Num frames 2800...
[2023-06-19 14:30:47,897][00753] Num frames 2900...
[2023-06-19 14:30:48,025][00753] Num frames 3000...
[2023-06-19 14:30:48,149][00753] Num frames 3100...
[2023-06-19 14:30:48,274][00753] Num frames 3200...
[2023-06-19 14:30:48,395][00753] Num frames 3300...
[2023-06-19 14:30:48,517][00753] Num frames 3400...
[2023-06-19 14:30:48,654][00753] Num frames 3500...
[2023-06-19 14:30:48,778][00753] Num frames 3600...
[2023-06-19 14:30:48,904][00753] Num frames 3700...
[2023-06-19 14:30:49,035][00753] Num frames 3800...
[2023-06-19 14:30:49,172][00753] Num frames 3900...
[2023-06-19 14:30:49,308][00753] Num frames 4000...
[2023-06-19 14:30:49,437][00753] Num frames 4100...
[2023-06-19 14:30:49,574][00753] Num frames 4200...
[2023-06-19 14:30:49,626][00753] Avg episode rewards: #0: 55.999, true rewards: #0: 21.000
[2023-06-19 14:30:49,628][00753] Avg episode reward: 55.999, avg true_objective: 21.000
[2023-06-19 14:30:49,762][00753] Num frames 4300...
[2023-06-19 14:30:49,891][00753] Num frames 4400...
[2023-06-19 14:30:50,027][00753] Num frames 4500...
[2023-06-19 14:30:50,150][00753] Num frames 4600...
[2023-06-19 14:30:50,280][00753] Num frames 4700...
[2023-06-19 14:30:50,352][00753] Avg episode rewards: #0: 40.039, true rewards: #0: 15.707
[2023-06-19 14:30:50,354][00753] Avg episode reward: 40.039, avg true_objective: 15.707
[2023-06-19 14:30:50,466][00753] Num frames 4800...
[2023-06-19 14:30:50,605][00753] Num frames 4900...
[2023-06-19 14:30:50,735][00753] Num frames 5000...
[2023-06-19 14:30:50,863][00753] Num frames 5100...
[2023-06-19 14:30:50,995][00753] Num frames 5200...
[2023-06-19 14:30:51,126][00753] Num frames 5300...
[2023-06-19 14:30:51,252][00753] Num frames 5400...
[2023-06-19 14:30:51,374][00753] Avg episode rewards: #0: 33.369, true rewards: #0: 13.620
[2023-06-19 14:30:51,381][00753] Avg episode reward: 33.369, avg true_objective: 13.620
[2023-06-19 14:30:51,452][00753] Num frames 5500...
[2023-06-19 14:30:51,578][00753] Num frames 5600...
[2023-06-19 14:30:51,712][00753] Num frames 5700...
[2023-06-19 14:30:51,845][00753] Num frames 5800...
[2023-06-19 14:30:51,977][00753] Num frames 5900...
[2023-06-19 14:30:52,101][00753] Num frames 6000...
[2023-06-19 14:30:52,239][00753] Num frames 6100...
[2023-06-19 14:30:52,420][00753] Num frames 6200...
[2023-06-19 14:30:52,612][00753] Num frames 6300...
[2023-06-19 14:30:52,802][00753] Num frames 6400...
[2023-06-19 14:30:52,989][00753] Num frames 6500...
[2023-06-19 14:30:53,174][00753] Num frames 6600...
[2023-06-19 14:30:53,354][00753] Num frames 6700...
[2023-06-19 14:30:53,536][00753] Num frames 6800...
[2023-06-19 14:30:53,717][00753] Num frames 6900...
[2023-06-19 14:30:53,902][00753] Num frames 7000...
[2023-06-19 14:30:54,079][00753] Num frames 7100...
[2023-06-19 14:30:54,313][00753] Avg episode rewards: #0: 35.797, true rewards: #0: 14.398
[2023-06-19 14:30:54,315][00753] Avg episode reward: 35.797, avg true_objective: 14.398
[2023-06-19 14:30:54,319][00753] Num frames 7200...
[2023-06-19 14:30:54,491][00753] Num frames 7300...
[2023-06-19 14:30:54,669][00753] Num frames 7400...
[2023-06-19 14:30:54,849][00753] Num frames 7500...
[2023-06-19 14:30:55,027][00753] Num frames 7600...
[2023-06-19 14:30:55,203][00753] Num frames 7700...
[2023-06-19 14:30:55,381][00753] Num frames 7800...
[2023-06-19 14:30:55,556][00753] Num frames 7900...
[2023-06-19 14:30:55,737][00753] Num frames 8000...
[2023-06-19 14:30:55,923][00753] Num frames 8100...
[2023-06-19 14:30:56,110][00753] Num frames 8200...
[2023-06-19 14:30:56,259][00753] Num frames 8300...
[2023-06-19 14:30:56,380][00753] Num frames 8400...
[2023-06-19 14:30:56,503][00753] Num frames 8500...
[2023-06-19 14:30:56,628][00753] Num frames 8600...
[2023-06-19 14:30:56,791][00753] Avg episode rewards: #0: 35.645, true rewards: #0: 14.478
[2023-06-19 14:30:56,793][00753] Avg episode reward: 35.645, avg true_objective: 14.478
[2023-06-19 14:30:56,814][00753] Num frames 8700...
[2023-06-19 14:30:56,940][00753] Num frames 8800...
[2023-06-19 14:30:57,064][00753] Num frames 8900...
[2023-06-19 14:30:57,190][00753] Num frames 9000...
[2023-06-19 14:30:57,310][00753] Num frames 9100...
[2023-06-19 14:30:57,428][00753] Num frames 9200...
[2023-06-19 14:30:57,559][00753] Num frames 9300...
[2023-06-19 14:30:57,682][00753] Num frames 9400...
[2023-06-19 14:30:57,813][00753] Num frames 9500...
[2023-06-19 14:30:57,942][00753] Num frames 9600...
[2023-06-19 14:30:58,022][00753] Avg episode rewards: #0: 33.885, true rewards: #0: 13.743
[2023-06-19 14:30:58,024][00753] Avg episode reward: 33.885, avg true_objective: 13.743
[2023-06-19 14:30:58,123][00753] Num frames 9700...
[2023-06-19 14:30:58,249][00753] Num frames 9800...
[2023-06-19 14:30:58,370][00753] Num frames 9900...
[2023-06-19 14:30:58,494][00753] Num frames 10000...
[2023-06-19 14:30:58,615][00753] Num frames 10100...
[2023-06-19 14:30:58,785][00753] Avg episode rewards: #0: 30.997, true rewards: #0: 12.748
[2023-06-19 14:30:58,786][00753] Avg episode reward: 30.997, avg true_objective: 12.748
[2023-06-19 14:30:58,793][00753] Num frames 10200...
[2023-06-19 14:30:58,931][00753] Num frames 10300...
[2023-06-19 14:30:59,066][00753] Num frames 10400...
[2023-06-19 14:30:59,196][00753] Num frames 10500...
[2023-06-19 14:30:59,315][00753] Num frames 10600...
[2023-06-19 14:30:59,444][00753] Num frames 10700...
[2023-06-19 14:30:59,565][00753] Num frames 10800...
[2023-06-19 14:30:59,690][00753] Num frames 10900...
[2023-06-19 14:30:59,814][00753] Num frames 11000...
[2023-06-19 14:30:59,945][00753] Num frames 11100...
[2023-06-19 14:31:00,068][00753] Num frames 11200...
[2023-06-19 14:31:00,193][00753] Num frames 11300...
[2023-06-19 14:31:00,321][00753] Num frames 11400...
[2023-06-19 14:31:00,441][00753] Num frames 11500...
[2023-06-19 14:31:00,563][00753] Num frames 11600...
[2023-06-19 14:31:00,691][00753] Num frames 11700...
[2023-06-19 14:31:00,817][00753] Num frames 11800...
[2023-06-19 14:31:00,953][00753] Num frames 11900...
[2023-06-19 14:31:01,031][00753] Avg episode rewards: #0: 32.462, true rewards: #0: 13.240
[2023-06-19 14:31:01,032][00753] Avg episode reward: 32.462, avg true_objective: 13.240
[2023-06-19 14:31:01,134][00753] Num frames 12000...
[2023-06-19 14:31:01,258][00753] Num frames 12100...
[2023-06-19 14:31:01,378][00753] Num frames 12200...
[2023-06-19 14:31:01,521][00753] Num frames 12300...
[2023-06-19 14:31:01,649][00753] Num frames 12400...
[2023-06-19 14:31:01,787][00753] Num frames 12500...
[2023-06-19 14:31:01,918][00753] Num frames 12600...
[2023-06-19 14:31:01,998][00753] Avg episode rewards: #0: 30.620, true rewards: #0: 12.620
[2023-06-19 14:31:02,000][00753] Avg episode reward: 30.620, avg true_objective: 12.620
[2023-06-19 14:32:18,953][00753] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2023-06-19 14:33:47,781][00753] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-06-19 14:33:47,783][00753] Overriding arg 'num_workers' with value 1 passed from command line
[2023-06-19 14:33:47,785][00753] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-06-19 14:33:47,786][00753] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-06-19 14:33:47,788][00753] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-06-19 14:33:47,790][00753] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-06-19 14:33:47,794][00753] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-06-19 14:33:47,796][00753] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-06-19 14:33:47,798][00753] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-06-19 14:33:47,799][00753] Adding new argument 'hf_repository'='Ditrip/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-06-19 14:33:47,800][00753] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-06-19 14:33:47,801][00753] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-06-19 14:33:47,802][00753] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-06-19 14:33:47,804][00753] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-06-19 14:33:47,806][00753] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-06-19 14:33:47,833][00753] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:33:47,839][00753] RunningMeanStd input shape: (1,)
[2023-06-19 14:33:47,856][00753] ConvEncoder: input_channels=3
[2023-06-19 14:33:47,911][00753] Conv encoder output size: 512
[2023-06-19 14:33:47,913][00753] Policy head output size: 512
[2023-06-19 14:33:47,941][00753] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-06-19 14:33:48,658][00753] Num frames 100...
[2023-06-19 14:33:48,835][00753] Num frames 200...
[2023-06-19 14:33:49,014][00753] Num frames 300...
[2023-06-19 14:33:49,203][00753] Num frames 400...
[2023-06-19 14:33:49,388][00753] Num frames 500...
[2023-06-19 14:33:49,573][00753] Num frames 600...
[2023-06-19 14:33:49,761][00753] Num frames 700...
[2023-06-19 14:33:49,949][00753] Num frames 800...
[2023-06-19 14:33:50,002][00753] Avg episode rewards: #0: 17.000, true rewards: #0: 8.000
[2023-06-19 14:33:50,004][00753] Avg episode reward: 17.000, avg true_objective: 8.000
[2023-06-19 14:33:50,193][00753] Num frames 900...
[2023-06-19 14:33:50,379][00753] Num frames 1000...
[2023-06-19 14:33:50,565][00753] Num frames 1100...
[2023-06-19 14:33:50,740][00753] Num frames 1200...
[2023-06-19 14:33:50,869][00753] Num frames 1300...
[2023-06-19 14:33:50,996][00753] Num frames 1400...
[2023-06-19 14:33:51,122][00753] Num frames 1500...
[2023-06-19 14:33:51,254][00753] Num frames 1600...
[2023-06-19 14:33:51,380][00753] Num frames 1700...
[2023-06-19 14:33:51,512][00753] Num frames 1800...
[2023-06-19 14:33:51,645][00753] Num frames 1900...
[2023-06-19 14:33:51,774][00753] Num frames 2000...
[2023-06-19 14:33:51,907][00753] Num frames 2100...
[2023-06-19 14:33:52,031][00753] Num frames 2200...
[2023-06-19 14:33:52,155][00753] Num frames 2300...
[2023-06-19 14:33:52,291][00753] Num frames 2400...
[2023-06-19 14:33:52,418][00753] Num frames 2500...
[2023-06-19 14:33:52,564][00753] Num frames 2600...
[2023-06-19 14:33:52,693][00753] Num frames 2700...
[2023-06-19 14:33:52,816][00753] Num frames 2800...
[2023-06-19 14:33:52,951][00753] Num frames 2900...
[2023-06-19 14:33:53,003][00753] Avg episode rewards: #0: 37.500, true rewards: #0: 14.500
[2023-06-19 14:33:53,004][00753] Avg episode reward: 37.500, avg true_objective: 14.500
[2023-06-19 14:33:53,134][00753] Num frames 3000...
[2023-06-19 14:33:53,264][00753] Num frames 3100...
[2023-06-19 14:33:53,394][00753] Num frames 3200...
[2023-06-19 14:33:53,520][00753] Num frames 3300...
[2023-06-19 14:33:53,640][00753] Num frames 3400...
[2023-06-19 14:33:53,777][00753] Num frames 3500...
[2023-06-19 14:33:53,902][00753] Num frames 3600...
[2023-06-19 14:33:54,040][00753] Num frames 3700...
[2023-06-19 14:33:54,166][00753] Num frames 3800...
[2023-06-19 14:33:54,295][00753] Num frames 3900...
[2023-06-19 14:33:54,423][00753] Num frames 4000...
[2023-06-19 14:33:54,554][00753] Num frames 4100...
[2023-06-19 14:33:54,677][00753] Num frames 4200...
[2023-06-19 14:33:54,813][00753] Num frames 4300...
[2023-06-19 14:33:54,937][00753] Num frames 4400...
[2023-06-19 14:33:55,059][00753] Num frames 4500...
[2023-06-19 14:33:55,192][00753] Num frames 4600...
[2023-06-19 14:33:55,316][00753] Num frames 4700...
[2023-06-19 14:33:55,449][00753] Avg episode rewards: #0: 40.519, true rewards: #0: 15.853
[2023-06-19 14:33:55,451][00753] Avg episode reward: 40.519, avg true_objective: 15.853
[2023-06-19 14:33:55,520][00753] Num frames 4800...
[2023-06-19 14:33:55,645][00753] Num frames 4900...
[2023-06-19 14:33:55,777][00753] Num frames 5000...
[2023-06-19 14:33:55,905][00753] Num frames 5100...
[2023-06-19 14:33:56,043][00753] Num frames 5200...
[2023-06-19 14:33:56,173][00753] Num frames 5300...
[2023-06-19 14:33:56,300][00753] Num frames 5400...
[2023-06-19 14:33:56,431][00753] Num frames 5500...
[2023-06-19 14:33:56,565][00753] Num frames 5600...
[2023-06-19 14:33:56,695][00753] Num frames 5700...
[2023-06-19 14:33:56,819][00753] Num frames 5800...
[2023-06-19 14:33:56,956][00753] Num frames 5900...
[2023-06-19 14:33:57,081][00753] Num frames 6000...
[2023-06-19 14:33:57,219][00753] Num frames 6100...
[2023-06-19 14:33:57,344][00753] Num frames 6200...
[2023-06-19 14:33:57,474][00753] Num frames 6300...
[2023-06-19 14:33:57,605][00753] Num frames 6400...
[2023-06-19 14:33:57,732][00753] Num frames 6500...
[2023-06-19 14:33:57,856][00753] Avg episode rewards: #0: 41.597, true rewards: #0: 16.348
[2023-06-19 14:33:57,858][00753] Avg episode reward: 41.597, avg true_objective: 16.348
[2023-06-19 14:33:57,938][00753] Num frames 6600...
[2023-06-19 14:33:58,059][00753] Num frames 6700...
[2023-06-19 14:33:58,194][00753] Num frames 6800...
[2023-06-19 14:33:58,320][00753] Num frames 6900...
[2023-06-19 14:33:58,445][00753] Avg episode rewards: #0: 34.308, true rewards: #0: 13.908
[2023-06-19 14:33:58,448][00753] Avg episode reward: 34.308, avg true_objective: 13.908
[2023-06-19 14:33:58,511][00753] Num frames 7000...
[2023-06-19 14:33:58,647][00753] Num frames 7100...
[2023-06-19 14:33:58,771][00753] Num frames 7200...
[2023-06-19 14:33:58,895][00753] Num frames 7300...
[2023-06-19 14:33:59,023][00753] Num frames 7400...
[2023-06-19 14:33:59,157][00753] Num frames 7500...
[2023-06-19 14:33:59,281][00753] Num frames 7600...
[2023-06-19 14:33:59,446][00753] Avg episode rewards: #0: 30.983, true rewards: #0: 12.817
[2023-06-19 14:33:59,448][00753] Avg episode reward: 30.983, avg true_objective: 12.817
[2023-06-19 14:33:59,463][00753] Num frames 7700...
[2023-06-19 14:33:59,601][00753] Num frames 7800...
[2023-06-19 14:33:59,724][00753] Num frames 7900...
[2023-06-19 14:33:59,855][00753] Num frames 8000...
[2023-06-19 14:33:59,983][00753] Num frames 8100...
[2023-06-19 14:34:00,115][00753] Num frames 8200...
[2023-06-19 14:34:00,245][00753] Num frames 8300...
[2023-06-19 14:34:00,378][00753] Num frames 8400...
[2023-06-19 14:34:00,466][00753] Avg episode rewards: #0: 29.323, true rewards: #0: 12.037
[2023-06-19 14:34:00,468][00753] Avg episode reward: 29.323, avg true_objective: 12.037
[2023-06-19 14:34:00,563][00753] Num frames 8500...
[2023-06-19 14:34:00,694][00753] Num frames 8600...
[2023-06-19 14:34:00,867][00753] Num frames 8700...
[2023-06-19 14:34:01,050][00753] Num frames 8800...
[2023-06-19 14:34:01,236][00753] Num frames 8900...
[2023-06-19 14:34:01,420][00753] Num frames 9000...
[2023-06-19 14:34:01,607][00753] Num frames 9100...
[2023-06-19 14:34:01,812][00753] Num frames 9200...
[2023-06-19 14:34:02,016][00753] Num frames 9300...
[2023-06-19 14:34:02,202][00753] Num frames 9400...
[2023-06-19 14:34:02,381][00753] Num frames 9500...
[2023-06-19 14:34:02,560][00753] Num frames 9600...
[2023-06-19 14:34:02,743][00753] Num frames 9700...
[2023-06-19 14:34:02,930][00753] Num frames 9800...
[2023-06-19 14:34:03,053][00753] Avg episode rewards: #0: 29.792, true rewards: #0: 12.292
[2023-06-19 14:34:03,055][00753] Avg episode reward: 29.792, avg true_objective: 12.292
[2023-06-19 14:34:03,177][00753] Num frames 9900...
[2023-06-19 14:34:03,363][00753] Num frames 10000...
[2023-06-19 14:34:03,547][00753] Num frames 10100...
[2023-06-19 14:34:03,737][00753] Num frames 10200...
[2023-06-19 14:34:03,930][00753] Num frames 10300...
[2023-06-19 14:34:04,129][00753] Avg episode rewards: #0: 27.419, true rewards: #0: 11.530
[2023-06-19 14:34:04,132][00753] Avg episode reward: 27.419, avg true_objective: 11.530
[2023-06-19 14:34:04,179][00753] Num frames 10400...
[2023-06-19 14:34:04,359][00753] Num frames 10500...
[2023-06-19 14:34:04,535][00753] Num frames 10600...
[2023-06-19 14:34:04,716][00753] Num frames 10700...
[2023-06-19 14:34:04,916][00753] Avg episode rewards: #0: 25.293, true rewards: #0: 10.793
[2023-06-19 14:34:04,918][00753] Avg episode reward: 25.293, avg true_objective: 10.793
[2023-06-19 14:35:11,109][00753] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2023-06-19 14:35:14,170][00753] The model has been pushed to https://huggingface.co/Ditrip/rl_course_vizdoom_health_gathering_supreme
[2023-06-19 14:36:13,295][00753] Environment doom_basic already registered, overwriting...
[2023-06-19 14:36:13,298][00753] Environment doom_two_colors_easy already registered, overwriting...
[2023-06-19 14:36:13,299][00753] Environment doom_two_colors_hard already registered, overwriting...
[2023-06-19 14:36:13,300][00753] Environment doom_dm already registered, overwriting...
[2023-06-19 14:36:13,302][00753] Environment doom_dwango5 already registered, overwriting...
[2023-06-19 14:36:13,303][00753] Environment doom_my_way_home_flat_actions already registered, overwriting...
[2023-06-19 14:36:13,304][00753] Environment doom_defend_the_center_flat_actions already registered, overwriting...
[2023-06-19 14:36:13,306][00753] Environment doom_my_way_home already registered, overwriting...
[2023-06-19 14:36:13,307][00753] Environment doom_deadly_corridor already registered, overwriting...
[2023-06-19 14:36:13,308][00753] Environment doom_defend_the_center already registered, overwriting...
[2023-06-19 14:36:13,310][00753] Environment doom_defend_the_line already registered, overwriting...
[2023-06-19 14:36:13,311][00753] Environment doom_health_gathering already registered, overwriting...
[2023-06-19 14:36:13,312][00753] Environment doom_health_gathering_supreme already registered, overwriting...
[2023-06-19 14:36:13,314][00753] Environment doom_battle already registered, overwriting...
[2023-06-19 14:36:13,315][00753] Environment doom_battle2 already registered, overwriting...
[2023-06-19 14:36:13,316][00753] Environment doom_duel_bots already registered, overwriting...
[2023-06-19 14:36:13,318][00753] Environment doom_deathmatch_bots already registered, overwriting...
[2023-06-19 14:36:13,319][00753] Environment doom_duel already registered, overwriting...
[2023-06-19 14:36:13,320][00753] Environment doom_deathmatch_full already registered, overwriting...
[2023-06-19 14:36:13,322][00753] Environment doom_benchmark already registered, overwriting...
[2023-06-19 14:36:13,323][00753] register_encoder_factory: <function make_vizdoom_encoder at 0x7f1cb360c4c0>
[2023-06-19 14:36:13,349][00753] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-06-19 14:36:13,351][00753] Overriding arg 'num_workers' with value 12 passed from command line
[2023-06-19 14:36:13,352][00753] Overriding arg 'train_for_env_steps' with value 6000000 passed from command line
[2023-06-19 14:36:13,357][00753] Experiment dir /content/train_dir/default_experiment already exists!
[2023-06-19 14:36:13,362][00753] Resuming existing experiment from /content/train_dir/default_experiment...
[2023-06-19 14:36:13,363][00753] Weights and Biases integration disabled
[2023-06-19 14:36:13,366][00753] Environment var CUDA_VISIBLE_DEVICES is 0

[2023-06-19 14:36:15,416][00753] Starting experiment with the following configuration:
help=False
algo=APPO
env=doom_health_gathering_supreme
experiment=default_experiment
train_dir=/content/train_dir
restart_behavior=resume
device=gpu
seed=None
num_policies=1
async_rl=True
serial_mode=False
batched_sampling=False
num_batches_to_accumulate=2
worker_num_splits=2
policy_workers_per_policy=1
max_policy_lag=1000
num_workers=12
num_envs_per_worker=4
batch_size=1024
num_batches_per_epoch=1
num_epochs=1
rollout=32
recurrence=32
shuffle_minibatches=False
gamma=0.99
reward_scale=1.0
reward_clip=1000.0
value_bootstrap=False
normalize_returns=True
exploration_loss_coeff=0.001
value_loss_coeff=0.5
kl_loss_coeff=0.0
exploration_loss=symmetric_kl
gae_lambda=0.95
ppo_clip_ratio=0.1
ppo_clip_value=0.2
with_vtrace=False
vtrace_rho=1.0
vtrace_c=1.0
optimizer=adam
adam_eps=1e-06
adam_beta1=0.9
adam_beta2=0.999
max_grad_norm=4.0
learning_rate=0.0001
lr_schedule=constant
lr_schedule_kl_threshold=0.008
lr_adaptive_min=1e-06
lr_adaptive_max=0.01
obs_subtract_mean=0.0
obs_scale=255.0
normalize_input=True
normalize_input_keys=None
decorrelate_experience_max_seconds=0
decorrelate_envs_on_one_worker=True
actor_worker_gpus=[]
set_workers_cpu_affinity=True
force_envs_single_thread=False
default_niceness=0
log_to_file=True
experiment_summaries_interval=10
flush_summaries_interval=30
stats_avg=100
summaries_use_frameskip=True
heartbeat_interval=20
heartbeat_reporting_interval=600
train_for_env_steps=6000000
train_for_seconds=10000000000
save_every_sec=120
keep_checkpoints=2
load_checkpoint_kind=latest
save_milestones_sec=-1
save_best_every_sec=5
save_best_metric=reward
save_best_after=100000
benchmark=False
encoder_mlp_layers=[512, 512]
encoder_conv_architecture=convnet_simple
encoder_conv_mlp_layers=[512]
use_rnn=True
rnn_size=512
rnn_type=gru
rnn_num_layers=1
decoder_mlp_layers=[]
nonlinearity=elu
policy_initialization=orthogonal
policy_init_gain=1.0
actor_critic_share_weights=True
adaptive_stddev=True
continuous_tanh_scale=0.0
initial_stddev=1.0
use_env_info_cache=False
env_gpu_actions=False
env_gpu_observations=True
env_frameskip=4
env_framestack=1
pixel_format=CHW
use_record_episode_statistics=False
with_wandb=False
wandb_user=None
wandb_project=sample_factory
wandb_group=None
wandb_job_type=SF
wandb_tags=[]
with_pbt=False
pbt_mix_policies_in_one_env=True
pbt_period_env_steps=5000000
pbt_start_mutation=20000000
pbt_replace_fraction=0.3
pbt_mutation_rate=0.15
pbt_replace_reward_gap=0.1
pbt_replace_reward_gap_absolute=1e-06
pbt_optimize_gamma=False
pbt_target_objective=true_objective
pbt_perturb_min=1.1
pbt_perturb_max=1.5
num_agents=-1
num_humans=0
num_bots=-1
start_bot_difficulty=None
timelimit=None
res_w=128
res_h=72
wide_aspect_ratio=False
eval_env_frameskip=1
fps=35
command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
git_hash=unknown
git_repo_name=not a git repository
[2023-06-19 14:36:15,418][00753] Saving configuration to /content/train_dir/default_experiment/config.json...
[2023-06-19 14:36:15,423][00753] Rollout worker 0 uses device cpu
[2023-06-19 14:36:15,425][00753] Rollout worker 1 uses device cpu
[2023-06-19 14:36:15,427][00753] Rollout worker 2 uses device cpu
[2023-06-19 14:36:15,429][00753] Rollout worker 3 uses device cpu
[2023-06-19 14:36:15,430][00753] Rollout worker 4 uses device cpu
[2023-06-19 14:36:15,431][00753] Rollout worker 5 uses device cpu
[2023-06-19 14:36:15,432][00753] Rollout worker 6 uses device cpu
[2023-06-19 14:36:15,434][00753] Rollout worker 7 uses device cpu
[2023-06-19 14:36:15,435][00753] Rollout worker 8 uses device cpu
[2023-06-19 14:36:15,436][00753] Rollout worker 9 uses device cpu
[2023-06-19 14:36:15,437][00753] Rollout worker 10 uses device cpu
[2023-06-19 14:36:15,439][00753] Rollout worker 11 uses device cpu
[2023-06-19 14:36:15,557][00753] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:36:15,560][00753] InferenceWorker_p0-w0: min num requests: 4
[2023-06-19 14:36:15,607][00753] Starting all processes...
[2023-06-19 14:36:15,608][00753] Starting process learner_proc0
[2023-06-19 14:36:15,657][00753] Starting all processes...
[2023-06-19 14:36:15,663][00753] Starting process inference_proc0-0
[2023-06-19 14:36:15,665][00753] Starting process rollout_proc0
[2023-06-19 14:36:15,679][00753] Starting process rollout_proc1
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc2
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc3
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc4
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc5
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc6
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc7
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc8
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc9
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc10
[2023-06-19 14:36:15,680][00753] Starting process rollout_proc11
[2023-06-19 14:36:39,488][22299] Worker 3 uses CPU cores [1]
[2023-06-19 14:36:39,604][00753] Heartbeat connected on RolloutWorker_w3
[2023-06-19 14:36:39,792][22310] Worker 9 uses CPU cores [1]
[2023-06-19 14:36:39,977][22295] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:36:39,981][22295] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-06-19 14:36:40,008][22303] Worker 8 uses CPU cores [0]
[2023-06-19 14:36:40,015][22311] Worker 11 uses CPU cores [1]
[2023-06-19 14:36:40,044][00753] Heartbeat connected on RolloutWorker_w9
[2023-06-19 14:36:40,062][22295] Num visible devices: 1
[2023-06-19 14:36:40,068][22300] Worker 4 uses CPU cores [0]
[2023-06-19 14:36:40,079][22297] Worker 1 uses CPU cores [1]
[2023-06-19 14:36:40,084][00753] Heartbeat connected on InferenceWorker_p0-w0
[2023-06-19 14:36:40,083][22278] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:36:40,087][22278] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-06-19 14:36:40,088][22296] Worker 0 uses CPU cores [0]
[2023-06-19 14:36:40,116][22309] Worker 10 uses CPU cores [0]
[2023-06-19 14:36:40,119][22304] Worker 7 uses CPU cores [1]
[2023-06-19 14:36:40,127][00753] Heartbeat connected on RolloutWorker_w8
[2023-06-19 14:36:40,132][22298] Worker 2 uses CPU cores [0]
[2023-06-19 14:36:40,135][22278] Num visible devices: 1
[2023-06-19 14:36:40,151][22302] Worker 6 uses CPU cores [0]
[2023-06-19 14:36:40,156][00753] Heartbeat connected on RolloutWorker_w0
[2023-06-19 14:36:40,157][00753] Heartbeat connected on RolloutWorker_w4
[2023-06-19 14:36:40,161][00753] Heartbeat connected on RolloutWorker_w10
[2023-06-19 14:36:40,169][00753] Heartbeat connected on RolloutWorker_w11
[2023-06-19 14:36:40,176][22278] Starting seed is not provided
[2023-06-19 14:36:40,177][22278] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:36:40,178][22278] Initializing actor-critic model on device cuda:0
[2023-06-19 14:36:40,176][00753] Heartbeat connected on RolloutWorker_w2
[2023-06-19 14:36:40,178][22278] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:36:40,182][22278] RunningMeanStd input shape: (1,)
[2023-06-19 14:36:40,181][00753] Heartbeat connected on RolloutWorker_w6
[2023-06-19 14:36:40,183][00753] Heartbeat connected on RolloutWorker_w7
[2023-06-19 14:36:40,187][00753] Heartbeat connected on RolloutWorker_w1
[2023-06-19 14:36:40,194][00753] Heartbeat connected on Batcher_0
[2023-06-19 14:36:40,213][22278] ConvEncoder: input_channels=3
[2023-06-19 14:36:40,248][22301] Worker 5 uses CPU cores [1]
[2023-06-19 14:36:40,259][00753] Heartbeat connected on RolloutWorker_w5
[2023-06-19 14:36:40,355][22278] Conv encoder output size: 512
[2023-06-19 14:36:40,356][22278] Policy head output size: 512
[2023-06-19 14:36:40,375][22278] Created Actor Critic model with architecture:
[2023-06-19 14:36:40,376][22278] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-06-19 14:36:40,600][22278] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-06-19 14:36:40,601][22278] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-06-19 14:36:40,636][22278] Loading model from checkpoint
[2023-06-19 14:36:40,641][22278] Loaded experiment state at self.train_step=978, self.env_steps=4005888
[2023-06-19 14:36:40,641][22278] Initialized policy 0 weights for model version 978
[2023-06-19 14:36:40,648][22278] LearnerWorker_p0 finished initialization!
[2023-06-19 14:36:40,649][22278] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-06-19 14:36:40,650][00753] Heartbeat connected on LearnerWorker_p0
[2023-06-19 14:36:40,856][22295] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:36:40,857][22295] RunningMeanStd input shape: (1,)
[2023-06-19 14:36:40,870][22295] ConvEncoder: input_channels=3
[2023-06-19 14:36:40,978][22295] Conv encoder output size: 512
[2023-06-19 14:36:40,979][22295] Policy head output size: 512
[2023-06-19 14:36:41,041][00753] Inference worker 0-0 is ready!
[2023-06-19 14:36:41,042][00753] All inference workers are ready! Signal rollout workers to start!
[2023-06-19 14:36:41,214][22309] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,233][22297] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,241][22301] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,243][22304] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,246][22311] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,243][22296] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,247][22298] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,259][22300] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,264][22310] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,258][22302] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,266][22299] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:41,263][22303] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-06-19 14:36:43,083][22298] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,087][22300] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,088][22309] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,247][22310] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,249][22304] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,254][22301] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,257][22297] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,259][22299] Decorrelating experience for 0 frames...
[2023-06-19 14:36:43,367][00753] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:36:44,486][22299] Decorrelating experience for 32 frames...
[2023-06-19 14:36:44,488][22297] Decorrelating experience for 32 frames...
[2023-06-19 14:36:44,495][22310] Decorrelating experience for 32 frames...
[2023-06-19 14:36:44,539][22300] Decorrelating experience for 32 frames...
[2023-06-19 14:36:44,537][22309] Decorrelating experience for 32 frames...
[2023-06-19 14:36:44,992][22302] Decorrelating experience for 0 frames...
[2023-06-19 14:36:44,995][22303] Decorrelating experience for 0 frames...
[2023-06-19 14:36:46,139][22304] Decorrelating experience for 32 frames...
[2023-06-19 14:36:46,160][22301] Decorrelating experience for 32 frames...
[2023-06-19 14:36:46,208][22296] Decorrelating experience for 0 frames...
[2023-06-19 14:36:46,406][22297] Decorrelating experience for 64 frames...
[2023-06-19 14:36:46,417][22310] Decorrelating experience for 64 frames...
[2023-06-19 14:36:46,457][22300] Decorrelating experience for 64 frames...
[2023-06-19 14:36:46,646][22303] Decorrelating experience for 32 frames...
[2023-06-19 14:36:46,648][22298] Decorrelating experience for 32 frames...
[2023-06-19 14:36:47,782][22311] Decorrelating experience for 0 frames...
[2023-06-19 14:36:47,868][22296] Decorrelating experience for 32 frames...
[2023-06-19 14:36:48,045][22310] Decorrelating experience for 96 frames...
[2023-06-19 14:36:48,108][22302] Decorrelating experience for 32 frames...
[2023-06-19 14:36:48,207][22304] Decorrelating experience for 64 frames...
[2023-06-19 14:36:48,270][22299] Decorrelating experience for 64 frames...
[2023-06-19 14:36:48,367][00753] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:36:48,555][22298] Decorrelating experience for 64 frames...
[2023-06-19 14:36:48,556][22303] Decorrelating experience for 64 frames...
[2023-06-19 14:36:49,352][22311] Decorrelating experience for 32 frames...
[2023-06-19 14:36:49,587][22304] Decorrelating experience for 96 frames...
[2023-06-19 14:36:49,707][22300] Decorrelating experience for 96 frames...
[2023-06-19 14:36:49,714][22296] Decorrelating experience for 64 frames...
[2023-06-19 14:36:50,839][22298] Decorrelating experience for 96 frames...
[2023-06-19 14:36:52,493][22302] Decorrelating experience for 64 frames...
[2023-06-19 14:36:53,370][00753] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 125.2. Samples: 1252. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-06-19 14:36:53,372][00753] Avg episode reward: [(0, '4.357')]
[2023-06-19 14:36:53,446][22299] Decorrelating experience for 96 frames...
[2023-06-19 14:36:54,089][22311] Decorrelating experience for 64 frames...
[2023-06-19 14:36:54,305][22303] Decorrelating experience for 96 frames...
[2023-06-19 14:36:54,934][22296] Decorrelating experience for 96 frames...
[2023-06-19 14:36:58,366][00753] Fps is (10 sec: 409.6, 60 sec: 273.1, 300 sec: 273.1). Total num frames: 4009984. Throughput: 0: 131.5. Samples: 1972. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2023-06-19 14:36:58,373][00753] Avg episode reward: [(0, '6.364')]
[2023-06-19 14:36:58,720][22301] Decorrelating experience for 64 frames...
[2023-06-19 14:37:00,102][22278] Signal inference workers to stop experience collection...
[2023-06-19 14:37:00,136][22295] InferenceWorker_p0-w0: stopping experience collection
[2023-06-19 14:37:00,246][22278] Signal inference workers to resume experience collection...
[2023-06-19 14:37:00,248][22295] InferenceWorker_p0-w0: resuming experience collection
[2023-06-19 14:37:00,881][22311] Decorrelating experience for 96 frames...
[2023-06-19 14:37:01,859][22309] Decorrelating experience for 64 frames...
[2023-06-19 14:37:02,338][22302] Decorrelating experience for 96 frames...
[2023-06-19 14:37:03,369][00753] Fps is (10 sec: 2048.2, 60 sec: 1023.9, 300 sec: 1023.9). Total num frames: 4026368. Throughput: 0: 228.6. Samples: 4572. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:37:03,372][00753] Avg episode reward: [(0, '7.372')]
[2023-06-19 14:37:06,350][22309] Decorrelating experience for 96 frames...
[2023-06-19 14:37:06,391][22297] Decorrelating experience for 96 frames...
[2023-06-19 14:37:07,239][22301] Decorrelating experience for 96 frames...
[2023-06-19 14:37:08,366][00753] Fps is (10 sec: 3276.8, 60 sec: 1474.6, 300 sec: 1474.6). Total num frames: 4042752. Throughput: 0: 388.1. Samples: 9702. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-06-19 14:37:08,371][00753] Avg episode reward: [(0, '10.755')]
[2023-06-19 14:37:09,179][22295] Updated weights for policy 0, policy_version 988 (0.0024)
[2023-06-19 14:37:13,366][00753] Fps is (10 sec: 3687.3, 60 sec: 1911.5, 300 sec: 1911.5). Total num frames: 4063232. Throughput: 0: 442.4. Samples: 13272. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:13,373][00753] Avg episode reward: [(0, '12.563')]
[2023-06-19 14:37:18,366][00753] Fps is (10 sec: 3686.4, 60 sec: 2106.5, 300 sec: 2106.5). Total num frames: 4079616. Throughput: 0: 521.0. Samples: 18236. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:18,369][00753] Avg episode reward: [(0, '14.803')]
[2023-06-19 14:37:20,866][22295] Updated weights for policy 0, policy_version 998 (0.0012)
[2023-06-19 14:37:23,367][00753] Fps is (10 sec: 2867.1, 60 sec: 2150.4, 300 sec: 2150.4). Total num frames: 4091904. Throughput: 0: 576.4. Samples: 23056. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:23,374][00753] Avg episode reward: [(0, '18.143')]
[2023-06-19 14:37:28,366][00753] Fps is (10 sec: 3686.4, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 4116480. Throughput: 0: 577.7. Samples: 25996. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:37:28,369][00753] Avg episode reward: [(0, '19.802')]
[2023-06-19 14:37:30,628][22295] Updated weights for policy 0, policy_version 1008 (0.0013)
[2023-06-19 14:37:33,367][00753] Fps is (10 sec: 4915.3, 60 sec: 2703.4, 300 sec: 2703.4). Total num frames: 4141056. Throughput: 0: 738.5. Samples: 33232. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:33,373][00753] Avg episode reward: [(0, '22.458')]
[2023-06-19 14:37:38,366][00753] Fps is (10 sec: 4096.0, 60 sec: 2755.5, 300 sec: 2755.5). Total num frames: 4157440. Throughput: 0: 837.6. Samples: 38942. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:38,376][00753] Avg episode reward: [(0, '23.440')]
[2023-06-19 14:37:41,628][22295] Updated weights for policy 0, policy_version 1018 (0.0027)
[2023-06-19 14:37:43,366][00753] Fps is (10 sec: 3276.8, 60 sec: 2798.9, 300 sec: 2798.9). Total num frames: 4173824. Throughput: 0: 875.1. Samples: 41350. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:43,374][00753] Avg episode reward: [(0, '24.698')]
[2023-06-19 14:37:48,366][00753] Fps is (10 sec: 3276.8, 60 sec: 3072.0, 300 sec: 2835.7). Total num frames: 4190208. Throughput: 0: 922.5. Samples: 46084. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:37:48,376][00753] Avg episode reward: [(0, '27.588')]
[2023-06-19 14:37:51,962][22295] Updated weights for policy 0, policy_version 1028 (0.0016)
[2023-06-19 14:37:53,367][00753] Fps is (10 sec: 4096.0, 60 sec: 3481.8, 300 sec: 2984.2). Total num frames: 4214784. Throughput: 0: 967.2. Samples: 53226. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:37:53,380][00753] Avg episode reward: [(0, '25.768')]
[2023-06-19 14:37:58,369][00753] Fps is (10 sec: 4504.5, 60 sec: 3754.5, 300 sec: 3058.2). Total num frames: 4235264. Throughput: 0: 967.6. Samples: 56816. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:37:58,371][00753] Avg episode reward: [(0, '25.108')]
[2023-06-19 14:38:02,515][22295] Updated weights for policy 0, policy_version 1038 (0.0011)
[2023-06-19 14:38:03,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.8, 300 sec: 3072.0). Total num frames: 4251648. Throughput: 0: 971.7. Samples: 61964. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:38:03,373][00753] Avg episode reward: [(0, '25.022')]
[2023-06-19 14:38:08,366][00753] Fps is (10 sec: 3277.6, 60 sec: 3754.7, 300 sec: 3084.0). Total num frames: 4268032. Throughput: 0: 969.5. Samples: 66682. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:38:08,371][00753] Avg episode reward: [(0, '25.362')]
[2023-06-19 14:38:13,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3140.3). Total num frames: 4288512. Throughput: 0: 965.4. Samples: 69440. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:38:13,374][00753] Avg episode reward: [(0, '24.075')]
[2023-06-19 14:38:13,384][22278] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001047_4288512.pth...
[2023-06-19 14:38:13,516][22278] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000933_3821568.pth
[2023-06-19 14:38:13,731][22295] Updated weights for policy 0, policy_version 1048 (0.0035)
[2023-06-19 14:38:18,366][00753] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3233.7). Total num frames: 4313088. Throughput: 0: 962.4. Samples: 76540. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:38:18,368][00753] Avg episode reward: [(0, '25.057')]
[2023-06-19 14:38:23,350][22295] Updated weights for policy 0, policy_version 1058 (0.0020)
[2023-06-19 14:38:23,367][00753] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3276.8). Total num frames: 4333568. Throughput: 0: 968.5. Samples: 82526. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:38:23,369][00753] Avg episode reward: [(0, '25.397')]
[2023-06-19 14:38:28,366][00753] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3237.8). Total num frames: 4345856. Throughput: 0: 967.2. Samples: 84874. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:38:28,372][00753] Avg episode reward: [(0, '25.798')]
[2023-06-19 14:38:33,366][00753] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3239.6). Total num frames: 4362240. Throughput: 0: 968.5. Samples: 89666. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:38:33,369][00753] Avg episode reward: [(0, '26.800')]
[2023-06-19 14:38:34,887][22295] Updated weights for policy 0, policy_version 1068 (0.0021)
[2023-06-19 14:38:38,366][00753] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3312.4). Total num frames: 4386816. Throughput: 0: 966.7. Samples: 96728. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:38:38,373][00753] Avg episode reward: [(0, '26.468')]
[2023-06-19 14:38:43,367][00753] Fps is (10 sec: 4915.2, 60 sec: 3959.5, 300 sec: 3379.2). Total num frames: 4411392. Throughput: 0: 967.6. Samples: 100356. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:38:43,373][00753] Avg episode reward: [(0, '28.813')]
[2023-06-19 14:38:44,016][22295] Updated weights for policy 0, policy_version 1078 (0.0012)
[2023-06-19 14:38:48,366][00753] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3375.1). Total num frames: 4427776. Throughput: 0: 972.0. Samples: 105706. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:38:48,373][00753] Avg episode reward: [(0, '29.018')]
[2023-06-19 14:38:53,369][00753] Fps is (10 sec: 3275.9, 60 sec: 3822.8, 300 sec: 3371.3). Total num frames: 4444160. Throughput: 0: 973.0. Samples: 110472. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:38:53,374][00753] Avg episode reward: [(0, '27.659')]
[2023-06-19 14:38:56,289][22295] Updated weights for policy 0, policy_version 1088 (0.0022)
[2023-06-19 14:38:58,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3823.1, 300 sec: 3398.2). Total num frames: 4464640. Throughput: 0: 970.4. Samples: 113108. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:38:58,372][00753] Avg episode reward: [(0, '28.410')]
[2023-06-19 14:39:03,367][00753] Fps is (10 sec: 4506.9, 60 sec: 3959.5, 300 sec: 3452.3). Total num frames: 4489216. Throughput: 0: 971.8. Samples: 120270. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:39:03,373][00753] Avg episode reward: [(0, '27.645')]
[2023-06-19 14:39:04,933][22295] Updated weights for policy 0, policy_version 1098 (0.0017)
[2023-06-19 14:39:08,367][00753] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3446.3). Total num frames: 4505600. Throughput: 0: 973.9. Samples: 126350. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:39:08,373][00753] Avg episode reward: [(0, '24.769')]
[2023-06-19 14:39:13,368][00753] Fps is (10 sec: 3276.5, 60 sec: 3891.1, 300 sec: 3440.6). Total num frames: 4521984. Throughput: 0: 973.1. Samples: 128664. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:39:13,371][00753] Avg episode reward: [(0, '24.195')]
[2023-06-19 14:39:17,415][22295] Updated weights for policy 0, policy_version 1108 (0.0025)
[2023-06-19 14:39:18,367][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3435.4). Total num frames: 4538368. Throughput: 0: 973.0. Samples: 133452. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:39:18,369][00753] Avg episode reward: [(0, '23.530')]
[2023-06-19 14:39:23,367][00753] Fps is (10 sec: 4096.4, 60 sec: 3822.9, 300 sec: 3481.6). Total num frames: 4562944. Throughput: 0: 974.4. Samples: 140578. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:39:23,373][00753] Avg episode reward: [(0, '22.835')]
[2023-06-19 14:39:26,090][22295] Updated weights for policy 0, policy_version 1118 (0.0020)
[2023-06-19 14:39:28,367][00753] Fps is (10 sec: 4915.2, 60 sec: 4027.7, 300 sec: 3525.0). Total num frames: 4587520. Throughput: 0: 974.7. Samples: 144218. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:39:28,375][00753] Avg episode reward: [(0, '23.982')]
[2023-06-19 14:39:33,367][00753] Fps is (10 sec: 4095.9, 60 sec: 4027.7, 300 sec: 3517.7). Total num frames: 4603904. Throughput: 0: 978.8. Samples: 149754. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:39:33,369][00753] Avg episode reward: [(0, '24.738')]
[2023-06-19 14:39:38,103][22295] Updated weights for policy 0, policy_version 1128 (0.0012)
[2023-06-19 14:39:38,366][00753] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3510.9). Total num frames: 4620288. Throughput: 0: 979.4. Samples: 154540. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:39:38,369][00753] Avg episode reward: [(0, '24.929')]
[2023-06-19 14:39:43,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3527.1). Total num frames: 4640768. Throughput: 0: 981.4. Samples: 157270. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:39:43,373][00753] Avg episode reward: [(0, '24.468')]
[2023-06-19 14:39:47,183][22295] Updated weights for policy 0, policy_version 1138 (0.0033)
[2023-06-19 14:39:48,366][00753] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3564.6). Total num frames: 4665344. Throughput: 0: 983.2. Samples: 164512. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:39:48,369][00753] Avg episode reward: [(0, '26.204')]
[2023-06-19 14:39:53,367][00753] Fps is (10 sec: 4505.6, 60 sec: 4027.9, 300 sec: 3578.6). Total num frames: 4685824. Throughput: 0: 987.2. Samples: 170774. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:39:53,373][00753] Avg episode reward: [(0, '26.814')]
[2023-06-19 14:39:57,949][22295] Updated weights for policy 0, policy_version 1148 (0.0058)
[2023-06-19 14:39:58,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3570.9). Total num frames: 4702208. Throughput: 0: 987.9. Samples: 173120. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:39:58,372][00753] Avg episode reward: [(0, '25.868')]
[2023-06-19 14:40:03,367][00753] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3563.5). Total num frames: 4718592. Throughput: 0: 989.6. Samples: 177984. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
[2023-06-19 14:40:03,369][00753] Avg episode reward: [(0, '26.029')]
[2023-06-19 14:40:08,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3576.5). Total num frames: 4739072. Throughput: 0: 983.1. Samples: 184818. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:40:08,370][00753] Avg episode reward: [(0, '27.939')]
[2023-06-19 14:40:08,387][22295] Updated weights for policy 0, policy_version 1158 (0.0032)
[2023-06-19 14:40:13,367][00753] Fps is (10 sec: 4505.5, 60 sec: 4027.8, 300 sec: 3608.4). Total num frames: 4763648. Throughput: 0: 981.5. Samples: 188384. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
[2023-06-19 14:40:13,376][00753] Avg episode reward: [(0, '27.435')]
[2023-06-19 14:40:13,386][22278] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001163_4763648.pth...
[2023-06-19 14:40:13,564][22278] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
[2023-06-19 14:40:18,366][00753] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3600.7). Total num frames: 4780032. Throughput: 0: 980.7. Samples: 193886. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:40:18,372][00753] Avg episode reward: [(0, '26.868')]
[2023-06-19 14:40:19,029][22295] Updated weights for policy 0, policy_version 1168 (0.0032)
[2023-06-19 14:40:23,367][00753] Fps is (10 sec: 3276.9, 60 sec: 3891.2, 300 sec: 3593.3). Total num frames: 4796416. Throughput: 0: 979.8. Samples: 198632. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:40:23,368][00753] Avg episode reward: [(0, '27.007')]
[2023-06-19 14:40:28,367][00753] Fps is (10 sec: 3686.3, 60 sec: 3822.9, 300 sec: 3604.5). Total num frames: 4816896. Throughput: 0: 978.0. Samples: 201278. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:40:28,370][00753] Avg episode reward: [(0, '28.959')]
[2023-06-19 14:40:29,866][22295] Updated weights for policy 0, policy_version 1178 (0.0017)
[2023-06-19 14:40:33,366][00753] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3633.0). Total num frames: 4841472. Throughput: 0: 979.7. Samples: 208600. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:40:33,369][00753] Avg episode reward: [(0, '27.656')]
[2023-06-19 14:40:38,366][00753] Fps is (10 sec: 4096.1, 60 sec: 3959.5, 300 sec: 3625.4). Total num frames: 4857856. Throughput: 0: 977.2. Samples: 214746. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:40:38,369][00753] Avg episode reward: [(0, '27.204')]
[2023-06-19 14:40:39,109][22295] Updated weights for policy 0, policy_version 1188 (0.0026)
[2023-06-19 14:40:43,370][00753] Fps is (10 sec: 3685.1, 60 sec: 3959.2, 300 sec: 3635.1). Total num frames: 4878336. Throughput: 0: 979.5. Samples: 217200. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:40:43,372][00753] Avg episode reward: [(0, '27.556')]
[2023-06-19 14:40:48,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3627.9). Total num frames: 4894720. Throughput: 0: 978.4. Samples: 222010. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:40:48,371][00753] Avg episode reward: [(0, '27.730')]
[2023-06-19 14:40:50,756][22295] Updated weights for policy 0, policy_version 1198 (0.0012)
[2023-06-19 14:40:53,366][00753] Fps is (10 sec: 4097.4, 60 sec: 3891.2, 300 sec: 3653.6). Total num frames: 4919296. Throughput: 0: 979.2. Samples: 228884. Policy #0 lag: (min: 0.0, avg: 0.8, max: 3.0)
[2023-06-19 14:40:53,374][00753] Avg episode reward: [(0, '26.206')]
[2023-06-19 14:40:58,366][00753] Fps is (10 sec: 4915.2, 60 sec: 4027.7, 300 sec: 3678.4). Total num frames: 4943872. Throughput: 0: 980.9. Samples: 232526. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:40:58,374][00753] Avg episode reward: [(0, '25.497')]
[2023-06-19 14:40:59,940][22295] Updated weights for policy 0, policy_version 1208 (0.0022)
[2023-06-19 14:41:03,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3654.9). Total num frames: 4956160. Throughput: 0: 985.7. Samples: 238242. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:41:03,369][00753] Avg episode reward: [(0, '25.035')]
[2023-06-19 14:41:08,367][00753] Fps is (10 sec: 2867.2, 60 sec: 3891.2, 300 sec: 3647.8). Total num frames: 4972544. Throughput: 0: 988.7. Samples: 243124. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-06-19 14:41:08,373][00753] Avg episode reward: [(0, '25.931')]
[2023-06-19 14:41:11,788][22295] Updated weights for policy 0, policy_version 1218 (0.0042)
[2023-06-19 14:41:13,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3656.1). Total num frames: 4993024. Throughput: 0: 985.4. Samples: 245620. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:41:13,374][00753] Avg episode reward: [(0, '24.143')]
[2023-06-19 14:41:18,367][00753] Fps is (10 sec: 4505.4, 60 sec: 3959.4, 300 sec: 3678.9). Total num frames: 5017600. Throughput: 0: 983.4. Samples: 252852. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:41:18,369][00753] Avg episode reward: [(0, '25.066')]
[2023-06-19 14:41:20,436][22295] Updated weights for policy 0, policy_version 1228 (0.0012)
[2023-06-19 14:41:23,367][00753] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3686.4). Total num frames: 5038080. Throughput: 0: 990.6. Samples: 259322. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:41:23,369][00753] Avg episode reward: [(0, '26.740')]
[2023-06-19 14:41:28,367][00753] Fps is (10 sec: 3686.5, 60 sec: 3959.5, 300 sec: 3679.2). Total num frames: 5054464. Throughput: 0: 990.0. Samples: 261748. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:41:28,369][00753] Avg episode reward: [(0, '26.941')]
[2023-06-19 14:41:32,587][22295] Updated weights for policy 0, policy_version 1238 (0.0012)
[2023-06-19 14:41:33,367][00753] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3672.3). Total num frames: 5070848. Throughput: 0: 990.0. Samples: 266560. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:41:33,369][00753] Avg episode reward: [(0, '28.274')]
[2023-06-19 14:41:38,367][00753] Fps is (10 sec: 4095.9, 60 sec: 3959.4, 300 sec: 3693.3). Total num frames: 5095424. Throughput: 0: 983.9. Samples: 273160. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:41:38,369][00753] Avg episode reward: [(0, '27.551')]
[2023-06-19 14:41:41,510][22295] Updated weights for policy 0, policy_version 1248 (0.0012)
[2023-06-19 14:41:43,367][00753] Fps is (10 sec: 4915.2, 60 sec: 4028.0, 300 sec: 3776.7). Total num frames: 5120000. Throughput: 0: 983.6. Samples: 276786. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
[2023-06-19 14:41:43,371][00753] Avg episode reward: [(0, '28.989')]
[2023-06-19 14:41:48,366][00753] Fps is (10 sec: 3686.5, 60 sec: 3959.5, 300 sec: 3818.3). Total num frames: 5132288. Throughput: 0: 982.9. Samples: 282472. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:41:48,369][00753] Avg episode reward: [(0, '27.900')]
[2023-06-19 14:41:53,367][00753] Fps is (10 sec: 2867.1, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 5148672. Throughput: 0: 981.1. Samples: 287272. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:41:53,374][00753] Avg episode reward: [(0, '27.637')]
[2023-06-19 14:41:53,413][22295] Updated weights for policy 0, policy_version 1258 (0.0012)
[2023-06-19 14:41:58,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3873.9). Total num frames: 5169152. Throughput: 0: 979.7. Samples: 289706. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:41:58,371][00753] Avg episode reward: [(0, '27.081')]
[2023-06-19 14:42:02,707][22295] Updated weights for policy 0, policy_version 1268 (0.0021)
[2023-06-19 14:42:03,366][00753] Fps is (10 sec: 4505.8, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 5193728. Throughput: 0: 978.9. Samples: 296904. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:42:03,371][00753] Avg episode reward: [(0, '27.350')]
[2023-06-19 14:42:08,366][00753] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 5214208. Throughput: 0: 974.8. Samples: 303186. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:42:08,370][00753] Avg episode reward: [(0, '27.132')]
[2023-06-19 14:42:13,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 5230592. Throughput: 0: 974.4. Samples: 305596. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:42:13,369][00753] Avg episode reward: [(0, '28.582')]
[2023-06-19 14:42:13,387][22278] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001277_5230592.pth...
[2023-06-19 14:42:13,551][22278] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001047_4288512.pth
[2023-06-19 14:42:14,268][22295] Updated weights for policy 0, policy_version 1278 (0.0012)
[2023-06-19 14:42:18,367][00753] Fps is (10 sec: 3276.8, 60 sec: 3823.0, 300 sec: 3915.5). Total num frames: 5246976. Throughput: 0: 972.5. Samples: 310324. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:42:18,372][00753] Avg episode reward: [(0, '28.962')]
[2023-06-19 14:42:23,367][00753] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3915.5). Total num frames: 5271552. Throughput: 0: 976.2. Samples: 317088. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:42:23,368][00753] Avg episode reward: [(0, '28.250')]
[2023-06-19 14:42:24,003][22295] Updated weights for policy 0, policy_version 1288 (0.0019)
[2023-06-19 14:42:28,366][00753] Fps is (10 sec: 4915.2, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 5296128. Throughput: 0: 976.3. Samples: 320718. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:42:28,371][00753] Avg episode reward: [(0, '29.213')]
[2023-06-19 14:42:33,366][00753] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 5312512. Throughput: 0: 978.7. Samples: 326514. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:42:33,373][00753] Avg episode reward: [(0, '28.213')]
[2023-06-19 14:42:34,383][22295] Updated weights for policy 0, policy_version 1298 (0.0031)
[2023-06-19 14:42:38,367][00753] Fps is (10 sec: 3276.7, 60 sec: 3891.2, 300 sec: 3915.5). Total num frames: 5328896. Throughput: 0: 980.9. Samples: 331412. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:42:38,375][00753] Avg episode reward: [(0, '28.573')]
[2023-06-19 14:42:43,367][00753] Fps is (10 sec: 3276.7, 60 sec: 3754.6, 300 sec: 3915.5). Total num frames: 5345280. Throughput: 0: 981.5. Samples: 333876. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:42:43,369][00753] Avg episode reward: [(0, '27.184')]
[2023-06-19 14:42:45,049][22295] Updated weights for policy 0, policy_version 1308 (0.0027)
[2023-06-19 14:42:48,366][00753] Fps is (10 sec: 4096.2, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5369856. Throughput: 0: 983.1. Samples: 341142. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:42:48,368][00753] Avg episode reward: [(0, '28.363')]
[2023-06-19 14:42:53,369][00753] Fps is (10 sec: 4504.6, 60 sec: 4027.6, 300 sec: 3915.5). Total num frames: 5390336. Throughput: 0: 988.2. Samples: 347658. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:42:53,373][00753] Avg episode reward: [(0, '27.651')]
[2023-06-19 14:42:54,792][22295] Updated weights for policy 0, policy_version 1318 (0.0014)
[2023-06-19 14:42:58,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5406720. Throughput: 0: 987.3. Samples: 350024. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:42:58,372][00753] Avg episode reward: [(0, '27.618')]
[2023-06-19 14:43:03,366][00753] Fps is (10 sec: 3277.6, 60 sec: 3822.9, 300 sec: 3915.5). Total num frames: 5423104. Throughput: 0: 992.0. Samples: 354964. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:43:03,374][00753] Avg episode reward: [(0, '27.952')]
[2023-06-19 14:43:06,170][22295] Updated weights for policy 0, policy_version 1328 (0.0032)
[2023-06-19 14:43:08,366][00753] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3929.4). Total num frames: 5447680. Throughput: 0: 989.9. Samples: 361634. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:43:08,372][00753] Avg episode reward: [(0, '28.384')]
[2023-06-19 14:43:13,367][00753] Fps is (10 sec: 4915.2, 60 sec: 4027.7, 300 sec: 3929.4). Total num frames: 5472256. Throughput: 0: 989.8. Samples: 365260. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:13,372][00753] Avg episode reward: [(0, '27.141')]
[2023-06-19 14:43:15,087][22295] Updated weights for policy 0, policy_version 1338 (0.0014)
[2023-06-19 14:43:18,366][00753] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 5488640. Throughput: 0: 990.6. Samples: 371090. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:43:18,369][00753] Avg episode reward: [(0, '26.356')]
[2023-06-19 14:43:23,370][00753] Fps is (10 sec: 3275.6, 60 sec: 3891.0, 300 sec: 3929.3). Total num frames: 5505024. Throughput: 0: 987.7. Samples: 375862. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:23,377][00753] Avg episode reward: [(0, '26.087')]
[2023-06-19 14:43:27,190][22295] Updated weights for policy 0, policy_version 1348 (0.0021)
[2023-06-19 14:43:28,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3943.3). Total num frames: 5525504. Throughput: 0: 987.3. Samples: 378306. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:28,374][00753] Avg episode reward: [(0, '24.648')]
[2023-06-19 14:43:33,370][00753] Fps is (10 sec: 4505.8, 60 sec: 3959.3, 300 sec: 3943.2). Total num frames: 5550080. Throughput: 0: 982.6. Samples: 385362. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:33,372][00753] Avg episode reward: [(0, '24.712')]
[2023-06-19 14:43:35,812][22295] Updated weights for policy 0, policy_version 1358 (0.0012)
[2023-06-19 14:43:38,367][00753] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5566464. Throughput: 0: 979.1. Samples: 391716. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:43:38,378][00753] Avg episode reward: [(0, '26.031')]
[2023-06-19 14:43:43,367][00753] Fps is (10 sec: 3277.9, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5582848. Throughput: 0: 979.2. Samples: 394090. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:43,369][00753] Avg episode reward: [(0, '26.289')]
[2023-06-19 14:43:48,366][00753] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3915.5). Total num frames: 5599232. Throughput: 0: 975.5. Samples: 398862. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:48,376][00753] Avg episode reward: [(0, '25.812')]
[2023-06-19 14:43:48,815][22295] Updated weights for policy 0, policy_version 1368 (0.0032)
[2023-06-19 14:43:53,367][00753] Fps is (10 sec: 4096.0, 60 sec: 3891.4, 300 sec: 3929.4). Total num frames: 5623808. Throughput: 0: 971.7. Samples: 405362. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:43:53,369][00753] Avg episode reward: [(0, '27.435')]
[2023-06-19 14:43:57,357][22295] Updated weights for policy 0, policy_version 1378 (0.0022)
[2023-06-19 14:43:58,366][00753] Fps is (10 sec: 4915.2, 60 sec: 4027.7, 300 sec: 3929.4). Total num frames: 5648384. Throughput: 0: 971.3. Samples: 408968. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:43:58,375][00753] Avg episode reward: [(0, '29.401')]
[2023-06-19 14:43:58,379][22278] Saving new best policy, reward=29.401!
[2023-06-19 14:44:03,366][00753] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3929.4). Total num frames: 5664768. Throughput: 0: 969.6. Samples: 414722. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:44:03,371][00753] Avg episode reward: [(0, '28.680')]
[2023-06-19 14:44:08,369][00753] Fps is (10 sec: 3275.9, 60 sec: 3891.0, 300 sec: 3929.4). Total num frames: 5681152. Throughput: 0: 969.4. Samples: 419484. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:44:08,376][00753] Avg episode reward: [(0, '29.090')]
[2023-06-19 14:44:09,491][22295] Updated weights for policy 0, policy_version 1388 (0.0011)
[2023-06-19 14:44:13,367][00753] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3929.4). Total num frames: 5697536. Throughput: 0: 967.4. Samples: 421838. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:44:13,373][00753] Avg episode reward: [(0, '28.578')]
[2023-06-19 14:44:13,384][22278] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001391_5697536.pth...
[2023-06-19 14:44:13,573][22278] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001163_4763648.pth
[2023-06-19 14:44:18,367][00753] Fps is (10 sec: 4097.0, 60 sec: 3891.2, 300 sec: 3929.4). Total num frames: 5722112. Throughput: 0: 965.4. Samples: 428802. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
[2023-06-19 14:44:18,370][00753] Avg episode reward: [(0, '30.459')]
[2023-06-19 14:44:18,382][22278] Saving new best policy, reward=30.459!
[2023-06-19 14:44:19,022][22295] Updated weights for policy 0, policy_version 1398 (0.0016)
[2023-06-19 14:44:23,368][00753] Fps is (10 sec: 4505.1, 60 sec: 3959.6, 300 sec: 3915.5). Total num frames: 5742592. Throughput: 0: 969.9. Samples: 435362. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:44:23,373][00753] Avg episode reward: [(0, '28.421')]
[2023-06-19 14:44:28,367][00753] Fps is (10 sec: 3686.5, 60 sec: 3891.2, 300 sec: 3915.5). Total num frames: 5758976. Throughput: 0: 970.5. Samples: 437764. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:44:28,369][00753] Avg episode reward: [(0, '27.132')]
[2023-06-19 14:44:30,114][22295] Updated weights for policy 0, policy_version 1408 (0.0033)
[2023-06-19 14:44:33,367][00753] Fps is (10 sec: 3277.2, 60 sec: 3754.9, 300 sec: 3915.5). Total num frames: 5775360. Throughput: 0: 970.1. Samples: 442518. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:44:33,371][00753] Avg episode reward: [(0, '28.250')]
[2023-06-19 14:44:38,367][00753] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3915.5). Total num frames: 5795840. Throughput: 0: 963.1. Samples: 448702. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:44:38,368][00753] Avg episode reward: [(0, '29.758')]
[2023-06-19 14:44:40,242][22295] Updated weights for policy 0, policy_version 1418 (0.0012)
[2023-06-19 14:44:43,367][00753] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5820416. Throughput: 0: 962.8. Samples: 452296. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:44:43,369][00753] Avg episode reward: [(0, '29.920')]
[2023-06-19 14:44:48,368][00753] Fps is (10 sec: 4504.9, 60 sec: 4027.6, 300 sec: 3915.5). Total num frames: 5840896. Throughput: 0: 971.1. Samples: 458424. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:44:48,378][00753] Avg episode reward: [(0, '30.304')]
[2023-06-19 14:44:51,347][22295] Updated weights for policy 0, policy_version 1428 (0.0017)
[2023-06-19 14:44:53,366][00753] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3901.6). Total num frames: 5853184. Throughput: 0: 970.2. Samples: 463140. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:44:53,372][00753] Avg episode reward: [(0, '30.202')]
[2023-06-19 14:44:58,367][00753] Fps is (10 sec: 2867.6, 60 sec: 3686.4, 300 sec: 3901.6). Total num frames: 5869568. Throughput: 0: 970.2. Samples: 465498. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-06-19 14:44:58,369][00753] Avg episode reward: [(0, '32.907')]
[2023-06-19 14:44:58,385][22278] Saving new best policy, reward=32.907!
[2023-06-19 14:45:01,667][22295] Updated weights for policy 0, policy_version 1438 (0.0031)
[2023-06-19 14:45:03,369][00753] Fps is (10 sec: 4504.3, 60 sec: 3891.0, 300 sec: 3929.3). Total num frames: 5898240. Throughput: 0: 965.5. Samples: 472250. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:45:03,372][00753] Avg episode reward: [(0, '30.852')]
[2023-06-19 14:45:08,366][00753] Fps is (10 sec: 4915.2, 60 sec: 3959.7, 300 sec: 3915.5). Total num frames: 5918720. Throughput: 0: 972.4. Samples: 479118. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:45:08,370][00753] Avg episode reward: [(0, '27.310')]
[2023-06-19 14:45:11,909][22295] Updated weights for policy 0, policy_version 1448 (0.0016)
[2023-06-19 14:45:13,367][00753] Fps is (10 sec: 3687.4, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5935104. Throughput: 0: 972.5. Samples: 481526. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-06-19 14:45:13,370][00753] Avg episode reward: [(0, '27.353')]
[2023-06-19 14:45:18,374][00753] Fps is (10 sec: 3274.4, 60 sec: 3822.5, 300 sec: 3915.4). Total num frames: 5951488. Throughput: 0: 973.3. Samples: 486322. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-06-19 14:45:18,377][00753] Avg episode reward: [(0, '25.210')]
[2023-06-19 14:45:22,942][22295] Updated weights for policy 0, policy_version 1458 (0.0021)
[2023-06-19 14:45:23,366][00753] Fps is (10 sec: 3686.4, 60 sec: 3823.0, 300 sec: 3915.5). Total num frames: 5971968. Throughput: 0: 975.9. Samples: 492618. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:45:23,369][00753] Avg episode reward: [(0, '22.058')]
[2023-06-19 14:45:28,367][00753] Fps is (10 sec: 4508.7, 60 sec: 3959.4, 300 sec: 3915.5). Total num frames: 5996544. Throughput: 0: 977.9. Samples: 496300. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-06-19 14:45:28,369][00753] Avg episode reward: [(0, '22.318')]
[2023-06-19 14:45:29,568][22278] Stopping Batcher_0...
[2023-06-19 14:45:29,569][22278] Loop batcher_evt_loop terminating...
[2023-06-19 14:45:29,570][00753] Component Batcher_0 stopped!
[2023-06-19 14:45:29,572][22278] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
[2023-06-19 14:45:29,671][22301] Stopping RolloutWorker_w5...
[2023-06-19 14:45:29,671][22301] Loop rollout_proc5_evt_loop terminating...
[2023-06-19 14:45:29,668][00753] Component RolloutWorker_w5 stopped!
[2023-06-19 14:45:29,684][22302] Stopping RolloutWorker_w6...
[2023-06-19 14:45:29,687][22296] Stopping RolloutWorker_w0...
[2023-06-19 14:45:29,688][00753] Component RolloutWorker_w6 stopped!
[2023-06-19 14:45:29,692][00753] Component RolloutWorker_w0 stopped!
[2023-06-19 14:45:29,699][22309] Stopping RolloutWorker_w10...
[2023-06-19 14:45:29,700][00753] Component RolloutWorker_w10 stopped!
[2023-06-19 14:45:29,714][22296] Loop rollout_proc0_evt_loop terminating...
[2023-06-19 14:45:29,718][22303] Stopping RolloutWorker_w8...
[2023-06-19 14:45:29,719][00753] Component RolloutWorker_w8 stopped!
[2023-06-19 14:45:29,722][22299] Stopping RolloutWorker_w3...
[2023-06-19 14:45:29,720][22309] Loop rollout_proc10_evt_loop terminating...
[2023-06-19 14:45:29,723][22299] Loop rollout_proc3_evt_loop terminating...
[2023-06-19 14:45:29,722][00753] Component RolloutWorker_w3 stopped!
[2023-06-19 14:45:29,689][22302] Loop rollout_proc6_evt_loop terminating...
[2023-06-19 14:45:29,730][22310] Stopping RolloutWorker_w9...
[2023-06-19 14:45:29,731][22310] Loop rollout_proc9_evt_loop terminating...
[2023-06-19 14:45:29,730][00753] Component RolloutWorker_w9 stopped!
[2023-06-19 14:45:29,718][22303] Loop rollout_proc8_evt_loop terminating...
[2023-06-19 14:45:29,740][22297] Stopping RolloutWorker_w1...
[2023-06-19 14:45:29,740][22297] Loop rollout_proc1_evt_loop terminating...
[2023-06-19 14:45:29,738][00753] Component RolloutWorker_w1 stopped!
[2023-06-19 14:45:29,744][22304] Stopping RolloutWorker_w7...
[2023-06-19 14:45:29,743][00753] Component RolloutWorker_w7 stopped!
[2023-06-19 14:45:29,751][22300] Stopping RolloutWorker_w4...
[2023-06-19 14:45:29,752][22300] Loop rollout_proc4_evt_loop terminating...
[2023-06-19 14:45:29,753][22298] Stopping RolloutWorker_w2...
[2023-06-19 14:45:29,754][22298] Loop rollout_proc2_evt_loop terminating...
[2023-06-19 14:45:29,753][00753] Component RolloutWorker_w4 stopped!
[2023-06-19 14:45:29,762][00753] Component RolloutWorker_w2 stopped!
[2023-06-19 14:45:29,748][22304] Loop rollout_proc7_evt_loop terminating...
[2023-06-19 14:45:29,781][22295] Weights refcount: 2 0
[2023-06-19 14:45:29,782][22295] Stopping InferenceWorker_p0-w0...
[2023-06-19 14:45:29,782][22295] Loop inference_proc0-0_evt_loop terminating...
[2023-06-19 14:45:29,783][00753] Component InferenceWorker_p0-w0 stopped!
[2023-06-19 14:45:29,795][00753] Component RolloutWorker_w11 stopped!
[2023-06-19 14:45:29,796][22311] Stopping RolloutWorker_w11...
[2023-06-19 14:45:29,797][22311] Loop rollout_proc11_evt_loop terminating...
[2023-06-19 14:45:29,823][22278] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001277_5230592.pth
[2023-06-19 14:45:29,840][22278] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
[2023-06-19 14:45:30,054][00753] Component LearnerWorker_p0 stopped!
[2023-06-19 14:45:30,056][00753] Waiting for process learner_proc0 to stop...
[2023-06-19 14:45:30,059][22278] Stopping LearnerWorker_p0...
[2023-06-19 14:45:30,060][22278] Loop learner_proc0_evt_loop terminating...
[2023-06-19 14:45:31,937][00753] Waiting for process inference_proc0-0 to join...
[2023-06-19 14:45:32,377][00753] Waiting for process rollout_proc0 to join...
[2023-06-19 14:45:36,938][00753] Waiting for process rollout_proc1 to join...
[2023-06-19 14:45:36,968][00753] Waiting for process rollout_proc2 to join...
[2023-06-19 14:45:36,970][00753] Waiting for process rollout_proc3 to join...
[2023-06-19 14:45:36,971][00753] Waiting for process rollout_proc4 to join...
[2023-06-19 14:45:36,973][00753] Waiting for process rollout_proc5 to join...
[2023-06-19 14:45:36,977][00753] Waiting for process rollout_proc6 to join...
[2023-06-19 14:45:36,982][00753] Waiting for process rollout_proc7 to join...
[2023-06-19 14:45:36,983][00753] Waiting for process rollout_proc8 to join...
[2023-06-19 14:45:36,985][00753] Waiting for process rollout_proc9 to join...
[2023-06-19 14:45:36,987][00753] Waiting for process rollout_proc10 to join...
[2023-06-19 14:45:36,989][00753] Waiting for process rollout_proc11 to join...
[2023-06-19 14:45:36,991][00753] Batcher 0 profile tree view:
batching: 15.1503, releasing_batches: 0.0120
[2023-06-19 14:45:36,992][00753] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0108
  wait_policy_total: 324.6077
update_model: 2.7738
  weight_update: 0.0024
one_step: 0.0033
  handle_policy_step: 187.4206
    deserialize: 6.1076, stack: 0.9300, obs_to_device_normalize: 37.4810, forward: 98.0533, send_messages: 13.2084
    prepare_outputs: 23.5951
      to_cpu: 13.3490
[2023-06-19 14:45:36,994][00753] Learner 0 profile tree view:
misc: 0.0026, prepare_batch: 11.4592
train: 39.3034
  epoch_init: 0.0029, minibatch_init: 0.0054, losses_postprocess: 0.2337, kl_divergence: 0.3921, after_optimizer: 1.6729
  calculate_losses: 14.1472
    losses_init: 0.0015, forward_head: 0.9955, bptt_initial: 8.6592, tail: 0.6937, advantages_returns: 0.1729, losses: 2.3929
    bptt: 1.0778
      bptt_forward_core: 1.0180
  update: 22.4473
    clip: 16.4902
[2023-06-19 14:45:36,995][00753] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.2178, enqueue_policy_requests: 80.0690, env_step: 372.0584, overhead: 8.8974, complete_rollouts: 2.6271
save_policy_outputs: 6.8942
  split_output_tensors: 3.4991
[2023-06-19 14:45:36,997][00753] RolloutWorker_w11 profile tree view:
wait_for_trajectories: 0.1147, enqueue_policy_requests: 81.5770, env_step: 366.0075, overhead: 8.1784, complete_rollouts: 2.7526
save_policy_outputs: 6.5695
  split_output_tensors: 3.0774
[2023-06-19 14:45:36,998][00753] Loop Runner_EvtLoop terminating...
[2023-06-19 14:45:36,999][00753] Runner profile tree view:
main_loop: 561.3929
[2023-06-19 14:45:37,001][00753] Collected {0: 6004736}, FPS: 3560.5
[2023-06-19 14:45:47,199][00753] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-06-19 14:45:47,201][00753] Overriding arg 'num_workers' with value 1 passed from command line
[2023-06-19 14:45:47,202][00753] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-06-19 14:45:47,204][00753] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-06-19 14:45:47,205][00753] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-06-19 14:45:47,206][00753] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-06-19 14:45:47,207][00753] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-06-19 14:45:47,208][00753] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-06-19 14:45:47,209][00753] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-06-19 14:45:47,210][00753] Adding new argument 'hf_repository'='Ditrip/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-06-19 14:45:47,211][00753] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-06-19 14:45:47,212][00753] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-06-19 14:45:47,213][00753] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-06-19 14:45:47,214][00753] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-06-19 14:45:47,215][00753] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-06-19 14:45:47,241][00753] RunningMeanStd input shape: (3, 72, 128)
[2023-06-19 14:45:47,246][00753] RunningMeanStd input shape: (1,)
[2023-06-19 14:45:47,266][00753] ConvEncoder: input_channels=3
[2023-06-19 14:45:47,322][00753] Conv encoder output size: 512
[2023-06-19 14:45:47,324][00753] Policy head output size: 512
[2023-06-19 14:45:47,351][00753] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
[2023-06-19 14:45:48,057][00753] Num frames 100...
[2023-06-19 14:45:48,243][00753] Num frames 200...
[2023-06-19 14:45:48,422][00753] Num frames 300...
[2023-06-19 14:45:48,615][00753] Num frames 400...
[2023-06-19 14:45:48,793][00753] Num frames 500...
[2023-06-19 14:45:48,991][00753] Num frames 600...
[2023-06-19 14:45:49,171][00753] Num frames 700...
[2023-06-19 14:45:49,355][00753] Num frames 800...
[2023-06-19 14:45:49,545][00753] Num frames 900...
[2023-06-19 14:45:49,730][00753] Num frames 1000...
[2023-06-19 14:45:49,918][00753] Num frames 1100...
[2023-06-19 14:45:50,114][00753] Num frames 1200...
[2023-06-19 14:45:50,301][00753] Num frames 1300...
[2023-06-19 14:45:50,486][00753] Num frames 1400...
[2023-06-19 14:45:50,672][00753] Num frames 1500...
[2023-06-19 14:45:50,856][00753] Num frames 1600...
[2023-06-19 14:45:50,986][00753] Num frames 1700...
[2023-06-19 14:45:51,114][00753] Num frames 1800...
[2023-06-19 14:45:51,243][00753] Num frames 1900...
[2023-06-19 14:45:51,367][00753] Num frames 2000...
[2023-06-19 14:45:51,496][00753] Num frames 2100...
[2023-06-19 14:45:51,548][00753] Avg episode rewards: #0: 59.999, true rewards: #0: 21.000
[2023-06-19 14:45:51,549][00753] Avg episode reward: 59.999, avg true_objective: 21.000
[2023-06-19 14:45:51,672][00753] Num frames 2200...
[2023-06-19 14:45:51,789][00753] Num frames 2300...
[2023-06-19 14:45:51,918][00753] Num frames 2400...
[2023-06-19 14:45:52,040][00753] Num frames 2500...
[2023-06-19 14:45:52,181][00753] Num frames 2600...
[2023-06-19 14:45:52,305][00753] Num frames 2700...
[2023-06-19 14:45:52,425][00753] Num frames 2800...
[2023-06-19 14:45:52,550][00753] Num frames 2900...
[2023-06-19 14:45:52,670][00753] Num frames 3000...
[2023-06-19 14:45:52,796][00753] Num frames 3100...
[2023-06-19 14:45:52,936][00753] Avg episode rewards: #0: 42.854, true rewards: #0: 15.855
[2023-06-19 14:45:52,937][00753] Avg episode reward: 42.854, avg true_objective: 15.855
[2023-06-19 14:45:52,978][00753] Num frames 3200...
[2023-06-19 14:45:53,113][00753] Num frames 3300...
[2023-06-19 14:45:53,236][00753] Num frames 3400...
[2023-06-19 14:45:53,362][00753] Num frames 3500...
[2023-06-19 14:45:53,483][00753] Num frames 3600...
[2023-06-19 14:45:53,608][00753] Num frames 3700...
[2023-06-19 14:45:53,731][00753] Num frames 3800...
[2023-06-19 14:45:53,859][00753] Num frames 3900...
[2023-06-19 14:45:53,982][00753] Num frames 4000...
[2023-06-19 14:45:54,115][00753] Num frames 4100...
[2023-06-19 14:45:54,238][00753] Num frames 4200...
[2023-06-19 14:45:54,366][00753] Num frames 4300...
[2023-06-19 14:45:54,490][00753] Num frames 4400...
[2023-06-19 14:45:54,616][00753] Num frames 4500...
[2023-06-19 14:45:54,737][00753] Num frames 4600...
[2023-06-19 14:45:54,861][00753] Num frames 4700...
[2023-06-19 14:45:55,009][00753] Avg episode rewards: #0: 40.913, true rewards: #0: 15.913
[2023-06-19 14:45:55,010][00753] Avg episode reward: 40.913, avg true_objective: 15.913
[2023-06-19 14:45:55,043][00753] Num frames 4800...
[2023-06-19 14:45:55,176][00753] Num frames 4900...
[2023-06-19 14:45:55,295][00753] Num frames 5000...
[2023-06-19 14:45:55,417][00753] Num frames 5100...
[2023-06-19 14:45:55,539][00753] Num frames 5200...
[2023-06-19 14:45:55,620][00753] Avg episode rewards: #0: 32.055, true rewards: #0: 13.055
[2023-06-19 14:45:55,622][00753] Avg episode reward: 32.055, avg true_objective: 13.055
[2023-06-19 14:45:55,716][00753] Num frames 5300...
[2023-06-19 14:45:55,842][00753] Num frames 5400...
[2023-06-19 14:45:55,963][00753] Num frames 5500...
[2023-06-19 14:45:56,086][00753] Num frames 5600...
[2023-06-19 14:45:56,221][00753] Num frames 5700...
[2023-06-19 14:45:56,344][00753] Num frames 5800...
[2023-06-19 14:45:56,468][00753] Num frames 5900...
[2023-06-19 14:45:56,629][00753] Avg episode rewards: #0: 28.780, true rewards: #0: 11.980
[2023-06-19 14:45:56,630][00753] Avg episode reward: 28.780, avg true_objective: 11.980
[2023-06-19 14:45:56,648][00753] Num frames 6000...
[2023-06-19 14:45:56,770][00753] Num frames 6100...
[2023-06-19 14:45:56,889][00753] Num frames 6200...
[2023-06-19 14:45:57,012][00753] Num frames 6300...
[2023-06-19 14:45:57,139][00753] Num frames 6400...
[2023-06-19 14:45:57,271][00753] Num frames 6500...
[2023-06-19 14:45:57,398][00753] Num frames 6600...
[2023-06-19 14:45:57,520][00753] Num frames 6700...
[2023-06-19 14:45:57,642][00753] Num frames 6800...
[2023-06-19 14:45:57,774][00753] Num frames 6900...
[2023-06-19 14:45:57,852][00753] Avg episode rewards: #0: 28.030, true rewards: #0: 11.530
[2023-06-19 14:45:57,853][00753] Avg episode reward: 28.030, avg true_objective: 11.530
[2023-06-19 14:45:57,957][00753] Num frames 7000...
[2023-06-19 14:45:58,086][00753] Num frames 7100...
[2023-06-19 14:45:58,217][00753] Num frames 7200...
[2023-06-19 14:45:58,344][00753] Num frames 7300...
[2023-06-19 14:45:58,469][00753] Num frames 7400...
[2023-06-19 14:45:58,591][00753] Num frames 7500...
[2023-06-19 14:45:58,714][00753] Num frames 7600...
[2023-06-19 14:45:58,838][00753] Num frames 7700...
[2023-06-19 14:45:58,965][00753] Num frames 7800...
[2023-06-19 14:45:59,091][00753] Num frames 7900...
[2023-06-19 14:45:59,247][00753] Avg episode rewards: #0: 28.248, true rewards: #0: 11.391
[2023-06-19 14:45:59,248][00753] Avg episode reward: 28.248, avg true_objective: 11.391
[2023-06-19 14:45:59,284][00753] Num frames 8000...
[2023-06-19 14:45:59,406][00753] Num frames 8100...
[2023-06-19 14:45:59,537][00753] Num frames 8200...
[2023-06-19 14:45:59,660][00753] Num frames 8300...
[2023-06-19 14:45:59,783][00753] Num frames 8400...
[2023-06-19 14:45:59,909][00753] Num frames 8500...
[2023-06-19 14:46:00,033][00753] Num frames 8600...
[2023-06-19 14:46:00,169][00753] Num frames 8700...
[2023-06-19 14:46:00,297][00753] Num frames 8800...
[2023-06-19 14:46:00,419][00753] Num frames 8900...
[2023-06-19 14:46:00,545][00753] Num frames 9000...
[2023-06-19 14:46:00,667][00753] Num frames 9100...
[2023-06-19 14:46:00,791][00753] Num frames 9200...
[2023-06-19 14:46:00,946][00753] Num frames 9300...
[2023-06-19 14:46:01,140][00753] Num frames 9400...
[2023-06-19 14:46:01,330][00753] Num frames 9500...
[2023-06-19 14:46:01,505][00753] Num frames 9600...
[2023-06-19 14:46:01,690][00753] Num frames 9700...
[2023-06-19 14:46:01,817][00753] Avg episode rewards: #0: 30.667, true rewards: #0: 12.167
[2023-06-19 14:46:01,823][00753] Avg episode reward: 30.667, avg true_objective: 12.167
[2023-06-19 14:46:01,959][00753] Num frames 9800...
[2023-06-19 14:46:02,157][00753] Num frames 9900...
[2023-06-19 14:46:02,354][00753] Num frames 10000...
[2023-06-19 14:46:02,541][00753] Num frames 10100...
[2023-06-19 14:46:02,721][00753] Num frames 10200...
[2023-06-19 14:46:02,905][00753] Num frames 10300...
[2023-06-19 14:46:03,086][00753] Num frames 10400...
[2023-06-19 14:46:03,268][00753] Num frames 10500...
[2023-06-19 14:46:03,454][00753] Num frames 10600...
[2023-06-19 14:46:03,636][00753] Num frames 10700...
[2023-06-19 14:46:03,822][00753] Num frames 10800...
[2023-06-19 14:46:04,017][00753] Num frames 10900...
[2023-06-19 14:46:04,199][00753] Num frames 11000...
[2023-06-19 14:46:04,390][00753] Num frames 11100...
[2023-06-19 14:46:04,573][00753] Num frames 11200...
[2023-06-19 14:46:04,757][00753] Num frames 11300...
[2023-06-19 14:46:04,923][00753] Num frames 11400...
[2023-06-19 14:46:05,054][00753] Num frames 11500...
[2023-06-19 14:46:05,120][00753] Avg episode rewards: #0: 32.230, true rewards: #0: 12.786
[2023-06-19 14:46:05,121][00753] Avg episode reward: 32.230, avg true_objective: 12.786
[2023-06-19 14:46:05,246][00753] Num frames 11600...
[2023-06-19 14:46:05,372][00753] Num frames 11700...
[2023-06-19 14:46:05,505][00753] Num frames 11800...
[2023-06-19 14:46:05,627][00753] Num frames 11900...
[2023-06-19 14:46:05,750][00753] Num frames 12000...
[2023-06-19 14:46:05,872][00753] Num frames 12100...
[2023-06-19 14:46:06,003][00753] Num frames 12200...
[2023-06-19 14:46:06,127][00753] Num frames 12300...
[2023-06-19 14:46:06,187][00753] Avg episode rewards: #0: 30.603, true rewards: #0: 12.303
[2023-06-19 14:46:06,189][00753] Avg episode reward: 30.603, avg true_objective: 12.303
[2023-06-19 14:47:20,286][00753] Replay video saved to /content/train_dir/default_experiment/replay.mp4!