DmitrMakeev commited on
Commit
02cacbe
·
1 Parent(s): 922f55d

Upload 7 files

Browse files
models/audio2pose.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ from models.util import MyResNet34
4
+
5
+ class audio2poseLSTM(nn.Module):
6
+ def __init__(self):
7
+ super(audio2poseLSTM,self).__init__()
8
+
9
+ self.em_pose = MyResNet34(256, 1)
10
+ self.em_audio = MyResNet34(256, 1)
11
+ self.lstm = nn.LSTM(512,256,num_layers=2,bias=True,batch_first=True)
12
+
13
+ self.output = nn.Linear(256,6)
14
+
15
+
16
+ def forward(self,x):
17
+ pose_em = self.em_pose(x["img"])
18
+ bs = pose_em.shape[0]
19
+ zero_state = torch.zeros((2, bs, 256), requires_grad=True).to(pose_em.device)
20
+ cur_state = (zero_state, zero_state)
21
+ img_em = pose_em
22
+ bs,seqlen,num,dims = x["audio"].shape
23
+
24
+ audio = x["audio"].reshape(-1, 1, num, dims)
25
+ audio_em = self.em_audio(audio).reshape(bs, seqlen, 256)
26
+
27
+ result = [self.output(img_em).unsqueeze(1)]
28
+
29
+ for i in range(seqlen):
30
+
31
+ img_em,cur_state = self.lstm(torch.cat((audio_em[:,i:i+1],img_em.unsqueeze(1)),dim=2),cur_state)
32
+ img_em = img_em.reshape(-1, 256)
33
+
34
+ result.append(self.output(img_em).unsqueeze(1))
35
+ res = torch.cat(result,dim=1)
36
+ return res
models/dense_motion.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ import torch.nn.functional as F
3
+ import torch
4
+ from models.util import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian
5
+
6
+
7
+ class DenseMotionNetwork(nn.Module):
8
+ """
9
+ Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
10
+ """
11
+
12
+ def __init__(self, block_expansion, num_blocks, max_features, num_kp, num_channels, estimate_occlusion_map=False,
13
+ scale_factor=1, kp_variance=0.01):
14
+ super(DenseMotionNetwork, self).__init__()
15
+ self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp + 1) * (num_channels + 1),
16
+ max_features=max_features, num_blocks=num_blocks)
17
+
18
+ self.mask = nn.Conv2d(self.hourglass.out_filters, num_kp + 1, kernel_size=(7, 7), padding=(3, 3))
19
+
20
+ if estimate_occlusion_map:
21
+ self.occlusion = nn.Conv2d(self.hourglass.out_filters, 1, kernel_size=(7, 7), padding=(3, 3))
22
+ else:
23
+ self.occlusion = None
24
+
25
+ self.num_kp = num_kp
26
+ self.scale_factor = scale_factor
27
+ self.kp_variance = kp_variance
28
+
29
+ if self.scale_factor != 1:
30
+ self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor)
31
+
32
+ def create_heatmap_representations(self, source_image, kp_driving, kp_source):
33
+ """
34
+ Eq 6. in the paper H_k(z)
35
+ """
36
+ spatial_size = source_image.shape[2:]
37
+ gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=self.kp_variance)
38
+ gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=self.kp_variance)
39
+ heatmap = gaussian_driving - gaussian_source
40
+
41
+ #adding background feature
42
+ zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1]).type(heatmap.type())
43
+ heatmap = torch.cat([zeros, heatmap], dim=1)
44
+ heatmap = heatmap.unsqueeze(2)
45
+ return heatmap
46
+
47
+ def create_sparse_motions(self, source_image, kp_driving, kp_source):
48
+ """
49
+ Eq 4. in the paper T_{s<-d}(z)
50
+ """
51
+ bs, _, h, w = source_image.shape
52
+ identity_grid = make_coordinate_grid((h, w), type=kp_source['value'].type())
53
+ identity_grid = identity_grid.view(1, 1, h, w, 2)
54
+ coordinate_grid = identity_grid - kp_driving['value'].view(bs, self.num_kp, 1, 1, 2)
55
+ if 'jacobian' in kp_driving:
56
+ jacobian = torch.matmul(kp_source['jacobian'], torch.inverse(kp_driving['jacobian']))
57
+ jacobian = jacobian.unsqueeze(-3).unsqueeze(-3)
58
+ jacobian = jacobian.repeat(1, 1, h, w, 1, 1)
59
+ coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1))
60
+ coordinate_grid = coordinate_grid.squeeze(-1)
61
+
62
+ driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.num_kp, 1, 1, 2)
63
+
64
+ #adding background feature
65
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1)
66
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1)
67
+ return sparse_motions
68
+
69
+ def create_deformed_source_image(self, source_image, sparse_motions):
70
+ """
71
+ Eq 7. in the paper \hat{T}_{s<-d}(z)
72
+ """
73
+ bs, _, h, w = source_image.shape
74
+ source_repeat = source_image.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp + 1, 1, 1, 1, 1)
75
+ source_repeat = source_repeat.view(bs * (self.num_kp + 1), -1, h, w)
76
+ sparse_motions = sparse_motions.view((bs * (self.num_kp + 1), h, w, -1))
77
+ sparse_deformed = F.grid_sample(source_repeat, sparse_motions)
78
+ # sparse_deformed = F.grid_sample(source_repeat, sparse_motions,align_corners = False)
79
+ sparse_deformed = sparse_deformed.view((bs, self.num_kp + 1, -1, h, w))
80
+ return sparse_deformed
81
+
82
+ def forward(self, source_image, kp_driving, kp_source):
83
+ if self.scale_factor != 1:
84
+ source_image = self.down(source_image)
85
+
86
+ bs, _, h, w = source_image.shape
87
+
88
+ out_dict = dict()
89
+ heatmap_representation = self.create_heatmap_representations(source_image, kp_driving, kp_source)#bs*(numkp+1)*1*h*w
90
+ sparse_motion = self.create_sparse_motions(source_image, kp_driving, kp_source)#bs*(numkp+1)*h*w*2
91
+ deformed_source = self.create_deformed_source_image(source_image, sparse_motion)
92
+ out_dict['sparse_deformed'] = deformed_source
93
+
94
+ input = torch.cat([heatmap_representation, deformed_source], dim=2)#bs*num+1*4*w*h
95
+ input = input.view(bs, -1, h, w)
96
+
97
+ prediction = self.hourglass(input)
98
+
99
+ mask = self.mask(prediction)
100
+ mask = F.softmax(mask, dim=1)
101
+ out_dict['mask'] = mask
102
+ mask = mask.unsqueeze(2)#bs*numkp+1*1*h*w
103
+ sparse_motion = sparse_motion.permute(0, 1, 4, 2, 3)
104
+ deformation = (sparse_motion * mask).sum(dim=1)# bs,2,64,64
105
+ deformation = deformation.permute(0, 2, 3, 1)#bs*h*w*2
106
+
107
+ out_dict['deformation'] = deformation
108
+
109
+ # Sec. 3.2 in the paper
110
+ if self.occlusion:
111
+ occlusion_map = torch.sigmoid(self.occlusion(prediction))
112
+ out_dict['occlusion_map'] = occlusion_map
113
+
114
+ return out_dict
models/generator.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ from models.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d
5
+ from models.dense_motion import DenseMotionNetwork
6
+
7
+
8
+ class OcclusionAwareGenerator(nn.Module):
9
+ """
10
+ Generator that given source image and and keypoints try to transform image according to movement trajectories
11
+ induced by keypoints. Generator follows Johnson architecture.
12
+ """
13
+
14
+ def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks,
15
+ num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
16
+ super(OcclusionAwareGenerator, self).__init__()
17
+
18
+ if dense_motion_params is not None:
19
+ self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels,
20
+ estimate_occlusion_map=estimate_occlusion_map,
21
+ **dense_motion_params)
22
+ else:
23
+ self.dense_motion_network = None
24
+
25
+ self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3))
26
+
27
+ down_blocks = []
28
+ for i in range(num_down_blocks):
29
+ in_features = min(max_features, block_expansion * (2 ** i))
30
+ out_features = min(max_features, block_expansion * (2 ** (i + 1)))
31
+ down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
32
+ self.down_blocks = nn.ModuleList(down_blocks)
33
+
34
+ up_blocks = []
35
+ for i in range(num_down_blocks):
36
+ in_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i)))
37
+ out_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i - 1)))
38
+ up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
39
+ self.up_blocks = nn.ModuleList(up_blocks)
40
+
41
+ self.bottleneck = torch.nn.Sequential()
42
+ in_features = min(max_features, block_expansion * (2 ** num_down_blocks))
43
+ for i in range(num_bottleneck_blocks):
44
+ self.bottleneck.add_module('r' + str(i), ResBlock2d(in_features, kernel_size=(3, 3), padding=(1, 1)))
45
+
46
+ self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3))
47
+ self.estimate_occlusion_map = estimate_occlusion_map
48
+ self.num_channels = num_channels
49
+
50
+ def deform_input(self, inp, deformation):
51
+ _, h_old, w_old, _ = deformation.shape
52
+ _, _, h, w = inp.shape
53
+ if h_old != h or w_old != w:
54
+ deformation = deformation.permute(0, 3, 1, 2)
55
+ deformation = F.interpolate(deformation, size=(h, w), mode='bilinear')
56
+ deformation = deformation.permute(0, 2, 3, 1)
57
+ return F.grid_sample(inp, deformation)
58
+ # return F.grid_sample(inp, deformation,align_corners = False)
59
+
60
+ def forward(self, source_image, kp_driving, kp_source):
61
+ # Encoding (downsampling) part
62
+ out = self.first(source_image)
63
+ for i in range(len(self.down_blocks)):
64
+ out = self.down_blocks[i](out)
65
+
66
+ # Transforming feature representation according to deformation and occlusion
67
+ output_dict = {}
68
+ if self.dense_motion_network is not None:
69
+ dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving,
70
+ kp_source=kp_source)
71
+ output_dict['mask'] = dense_motion['mask']
72
+ output_dict['sparse_deformed'] = dense_motion['sparse_deformed']
73
+ output_dict['deformation'] = dense_motion['deformation']
74
+
75
+ if 'occlusion_map' in dense_motion:
76
+ occlusion_map = dense_motion['occlusion_map']
77
+ output_dict['occlusion_map'] = occlusion_map
78
+ else:
79
+ occlusion_map = None
80
+ deformation = dense_motion['deformation']
81
+ out = self.deform_input(out, deformation)
82
+
83
+ if occlusion_map is not None:
84
+ if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
85
+ occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
86
+ out = out * occlusion_map
87
+
88
+ output_dict["deformed"] = self.deform_input(source_image, deformation)
89
+
90
+ # Decoding part
91
+ out = self.bottleneck(out)
92
+ for i in range(len(self.up_blocks)):
93
+ out = self.up_blocks[i](out)
94
+ out = self.final(out)
95
+ out = F.sigmoid(out)
96
+
97
+ output_dict["prediction"] = out
98
+
99
+ return output_dict
models/keypoint_detector.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from models.util import Hourglass, make_coordinate_grid, AntiAliasInterpolation2d
5
+
6
+
7
+
8
+ class KPDetector(nn.Module):
9
+ """
10
+ Detecting a keypoints. Return keypoint position and jacobian near each keypoint.
11
+ """
12
+
13
+ def __init__(self, block_expansion, num_kp, num_channels, max_features,
14
+ num_blocks, temperature, estimate_jacobian=False, scale_factor=1,
15
+ single_jacobian_map=False, pad=0):
16
+ super(KPDetector, self).__init__()
17
+
18
+ self.predictor = Hourglass(block_expansion, in_features=num_channels,
19
+ max_features=max_features, num_blocks=num_blocks)
20
+
21
+ self.kp = nn.Conv2d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=(7, 7),
22
+ padding=pad)
23
+
24
+ if estimate_jacobian:
25
+ self.num_jacobian_maps = 1 if single_jacobian_map else num_kp
26
+ self.jacobian = nn.Conv2d(in_channels=self.predictor.out_filters,
27
+ out_channels=4 * self.num_jacobian_maps, kernel_size=(7, 7), padding=pad)
28
+ self.jacobian.weight.data.zero_()
29
+ self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 1] * self.num_jacobian_maps, dtype=torch.float))
30
+ else:
31
+ self.jacobian = None
32
+
33
+ self.temperature = temperature
34
+ self.scale_factor = scale_factor
35
+ if self.scale_factor != 1:
36
+ self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor)
37
+
38
+ def gaussian2kp(self, heatmap):
39
+ """
40
+ Extract the mean and from a heatmap
41
+ """
42
+ shape = heatmap.shape
43
+ heatmap = heatmap.unsqueeze(-1)
44
+ grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0)
45
+ value = (heatmap * grid).sum(dim=(2, 3))
46
+ kp = {'value': value}
47
+
48
+ return kp
49
+
50
+ def forward(self, x,with_feature = False):
51
+ if self.scale_factor != 1:
52
+ x = self.down(x)
53
+
54
+ feature_map = self.predictor(x)
55
+ prediction = self.kp(feature_map)
56
+ final_shape = prediction.shape
57
+ heatmap = prediction.view(final_shape[0], final_shape[1], -1)
58
+ heatmap = F.softmax(heatmap / self.temperature, dim=2)
59
+ heatmap = heatmap.view(*final_shape)
60
+
61
+ out = self.gaussian2kp(heatmap)
62
+
63
+ if self.jacobian is not None:
64
+ jacobian_map = self.jacobian(feature_map)
65
+ out["jacobian_map"] = jacobian_map
66
+
67
+ jacobian_map = jacobian_map.reshape(final_shape[0], self.num_jacobian_maps, 4, final_shape[2],
68
+ final_shape[3])
69
+
70
+ heatmap = heatmap.unsqueeze(2)
71
+
72
+ jacobian = heatmap * jacobian_map
73
+ jacobian = jacobian.view(final_shape[0], final_shape[1], 4, -1)
74
+ jacobian = jacobian.sum(dim=-1)
75
+ jacobian = jacobian.view(jacobian.shape[0], jacobian.shape[1], 2, 2)
76
+ out['jacobian'] = jacobian
77
+ out["pred_feature"] = prediction
78
+ if with_feature:
79
+ out["feature_map"] = feature_map
80
+ return out
models/resnet.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+
5
+ def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
6
+ """3x3 convolution with padding"""
7
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
8
+ padding=dilation, groups=groups, bias=False, dilation=dilation)
9
+
10
+
11
+ def conv1x1(in_planes, out_planes, stride=1):
12
+ """1x1 convolution"""
13
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
14
+
15
+ class BasicBlock(nn.Module):
16
+ expansion = 1
17
+
18
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
19
+ base_width=64, dilation=1, norm_layer=None):
20
+ super(BasicBlock, self).__init__()
21
+ if norm_layer is None:
22
+ norm_layer = nn.BatchNorm2d
23
+ if groups != 1 or base_width != 64:
24
+ raise ValueError('BasicBlock only supports groups=1 and base_width=64')
25
+ if dilation > 1:
26
+ raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
27
+ # Both self.conv1 and self.downsample layers downsample the input when stride != 1
28
+ self.conv1 = conv3x3(inplanes, planes, stride)
29
+ self.bn1 = norm_layer(planes)
30
+ self.relu = nn.ReLU(inplace=True)
31
+ self.conv2 = conv3x3(planes, planes)
32
+ self.bn2 = norm_layer(planes)
33
+ self.downsample = downsample
34
+ self.stride = stride
35
+
36
+ def forward(self, x):
37
+ identity = x
38
+
39
+ out = self.conv1(x)
40
+ out = self.bn1(out)
41
+ out = self.relu(out)
42
+
43
+ out = self.conv2(out)
44
+ out = self.bn2(out)
45
+
46
+ if self.downsample is not None:
47
+ identity = self.downsample(x)
48
+
49
+ out += identity
50
+ out = self.relu(out)
51
+
52
+ return out
53
+
54
+
55
+ class Bottleneck(nn.Module):
56
+ expansion = 4
57
+
58
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
59
+ base_width=64, dilation=1, norm_layer=None):
60
+ super(Bottleneck, self).__init__()
61
+ if norm_layer is None:
62
+ norm_layer = nn.BatchNorm2d
63
+ width = int(planes * (base_width / 64.)) * groups
64
+ # Both self.conv2 and self.downsample layers downsample the input when stride != 1
65
+ self.conv1 = conv1x1(inplanes, width)
66
+ self.bn1 = norm_layer(width)
67
+ self.conv2 = conv3x3(width, width, stride, groups, dilation)
68
+ self.bn2 = norm_layer(width)
69
+ self.conv3 = conv1x1(width, planes * self.expansion)
70
+ self.bn3 = norm_layer(planes * self.expansion)
71
+ self.relu = nn.ReLU(inplace=True)
72
+ self.downsample = downsample
73
+ self.stride = stride
74
+
75
+ def forward(self, x):
76
+ identity = x
77
+
78
+ out = self.conv1(x)
79
+ out = self.bn1(out)
80
+ out = self.relu(out)
81
+
82
+ out = self.conv2(out)
83
+ out = self.bn2(out)
84
+ out = self.relu(out)
85
+
86
+ out = self.conv3(out)
87
+ out = self.bn3(out)
88
+
89
+ if self.downsample is not None:
90
+ identity = self.downsample(x)
91
+
92
+ out += identity
93
+ out = self.relu(out)
94
+
95
+ return out
96
+
97
+ class ResNet(nn.Module):
98
+
99
+ def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
100
+ groups=1, width_per_group=64, replace_stride_with_dilation=None,
101
+ norm_layer=None,input_channel = 3):
102
+ super(ResNet, self).__init__()
103
+ if norm_layer is None:
104
+ norm_layer = nn.BatchNorm2d
105
+ self._norm_layer = norm_layer
106
+
107
+ self.inplanes = 64
108
+ self.dilation = 1
109
+ if replace_stride_with_dilation is None:
110
+ # each element in the tuple indicates if we should replace
111
+ # the 2x2 stride with a dilated convolution instead
112
+ replace_stride_with_dilation = [False, False, False]
113
+ if len(replace_stride_with_dilation) != 3:
114
+ raise ValueError("replace_stride_with_dilation should be None "
115
+ "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
116
+ self.groups = groups
117
+ self.base_width = width_per_group
118
+ self.conv1 = nn.Conv2d(input_channel, self.inplanes, kernel_size=7, stride=2, padding=3,
119
+ bias=False)
120
+ self.bn1 = norm_layer(self.inplanes)
121
+ self.relu = nn.ReLU(inplace=True)
122
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
123
+ self.layer1 = self._make_layer(block, 64, layers[0])
124
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
125
+ dilate=replace_stride_with_dilation[0])
126
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
127
+ dilate=replace_stride_with_dilation[1])
128
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
129
+ dilate=replace_stride_with_dilation[2])
130
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
131
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
132
+
133
+ for m in self.modules():
134
+ if isinstance(m, nn.Conv2d):
135
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
136
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
137
+ nn.init.constant_(m.weight, 1)
138
+ nn.init.constant_(m.bias, 0)
139
+
140
+ # Zero-initialize the last BN in each residual branch,
141
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
142
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
143
+ if zero_init_residual:
144
+ for m in self.modules():
145
+ if isinstance(m, Bottleneck):
146
+ nn.init.constant_(m.bn3.weight, 0)
147
+ elif isinstance(m, BasicBlock):
148
+ nn.init.constant_(m.bn2.weight, 0)
149
+
150
+ def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
151
+ norm_layer = self._norm_layer
152
+ downsample = None
153
+ previous_dilation = self.dilation
154
+ if dilate:
155
+ self.dilation *= stride
156
+ stride = 1
157
+ if stride != 1 or self.inplanes != planes * block.expansion:
158
+ downsample = nn.Sequential(
159
+ conv1x1(self.inplanes, planes * block.expansion, stride),
160
+ norm_layer(planes * block.expansion),
161
+ )
162
+
163
+ layers = []
164
+ layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
165
+ self.base_width, previous_dilation, norm_layer))
166
+ self.inplanes = planes * block.expansion
167
+ for _ in range(1, blocks):
168
+ layers.append(block(self.inplanes, planes, groups=self.groups,
169
+ base_width=self.base_width, dilation=self.dilation,
170
+ norm_layer=norm_layer))
171
+
172
+ return nn.Sequential(*layers)
173
+
174
+ def forward(self, x):
175
+ x = self.conv1(x)
176
+ x = self.bn1(x)
177
+ x = self.relu(x)
178
+ x = self.maxpool(x)
179
+
180
+ x = self.layer1(x)
181
+ x = self.layer2(x)
182
+ x = self.layer3(x)
183
+ x = self.layer4(x)
184
+
185
+ x = self.avgpool(x)
186
+ x = torch.flatten(x, 1)
187
+ x = self.fc(x)
188
+
189
+ return x
190
+
191
+ def _resnet(arch, block, layers, pretrained, progress, **kwargs):
192
+ model = ResNet(block, layers, **kwargs)
193
+ return model
194
+
195
+ def resnet34(pretrained=False, progress=True, **kwargs):
196
+ r"""ResNet-34 model from
197
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
198
+
199
+ Args:
200
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
201
+ progress (bool): If True, displays a progress bar of the download to stderr
202
+ """
203
+ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
204
+ **kwargs)
models/transformer.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ from models.util import mydownres2Dblock
4
+ import numpy as np
5
+ from models.util import AntiAliasInterpolation2d,make_coordinate_grid
6
+ from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
7
+ import torch.nn.functional as F
8
+ import copy
9
+
10
+
11
+ class PositionalEncoding(nn.Module):
12
+
13
+ def __init__(self, d_hid, n_position=200):
14
+ super(PositionalEncoding, self).__init__()
15
+
16
+ # Not a parameter
17
+ self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
18
+
19
+ def _get_sinusoid_encoding_table(self, n_position, d_hid):
20
+ ''' Sinusoid position encoding table '''
21
+ # TODO: make it with torch instead of numpy
22
+
23
+ def get_position_angle_vec(position):
24
+ return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
25
+
26
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
27
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
28
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
29
+
30
+ return torch.FloatTensor(sinusoid_table).unsqueeze(0)
31
+
32
+ def forward(self, winsize):
33
+ return self.pos_table[:, :winsize].clone().detach()
34
+
35
+ def _get_activation_fn(activation):
36
+ """Return an activation function given a string"""
37
+ if activation == "relu":
38
+ return F.relu
39
+ if activation == "gelu":
40
+ return F.gelu
41
+ if activation == "glu":
42
+ return F.glu
43
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
44
+
45
+ def _get_clones(module, N):
46
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
47
+
48
+ class Transformer(nn.Module):
49
+
50
+ def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
51
+ num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
52
+ activation="relu", normalize_before=False,
53
+ return_intermediate_dec=True):
54
+ super().__init__()
55
+
56
+ encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
57
+ dropout, activation, normalize_before)
58
+ encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
59
+ self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
60
+
61
+ decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
62
+ dropout, activation, normalize_before)
63
+ decoder_norm = nn.LayerNorm(d_model)
64
+ self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
65
+ return_intermediate=return_intermediate_dec)
66
+
67
+ self._reset_parameters()
68
+
69
+ self.d_model = d_model
70
+ self.nhead = nhead
71
+
72
+ def _reset_parameters(self):
73
+ for p in self.parameters():
74
+ if p.dim() > 1:
75
+ nn.init.xavier_uniform_(p)
76
+
77
+ def forward(self,opt, src, query_embed, pos_embed):
78
+ # flatten NxCxHxW to HWxNxC
79
+
80
+ src = src.permute(1, 0, 2)
81
+ pos_embed = pos_embed.permute(1, 0, 2)
82
+ query_embed = query_embed.permute(1, 0, 2)
83
+
84
+ tgt = torch.zeros_like(query_embed)
85
+ memory = self.encoder(src, pos=pos_embed)
86
+
87
+ hs = self.decoder(tgt, memory,
88
+ pos=pos_embed, query_pos=query_embed)
89
+ return hs
90
+
91
+
92
+ class TransformerEncoder(nn.Module):
93
+
94
+ def __init__(self, encoder_layer, num_layers, norm=None):
95
+ super().__init__()
96
+ self.layers = _get_clones(encoder_layer, num_layers)
97
+ self.num_layers = num_layers
98
+ self.norm = norm
99
+
100
+ def forward(self, src, mask = None, src_key_padding_mask = None, pos = None):
101
+ output = src+pos
102
+
103
+ for layer in self.layers:
104
+ output = layer(output, src_mask=mask,
105
+ src_key_padding_mask=src_key_padding_mask, pos=pos)
106
+
107
+ if self.norm is not None:
108
+ output = self.norm(output)
109
+
110
+ return output
111
+
112
+
113
+ class TransformerDecoder(nn.Module):
114
+
115
+ def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
116
+ super().__init__()
117
+ self.layers = _get_clones(decoder_layer, num_layers)
118
+ self.num_layers = num_layers
119
+ self.norm = norm
120
+ self.return_intermediate = return_intermediate
121
+
122
+ def forward(self, tgt, memory, tgt_mask = None, memory_mask = None, tgt_key_padding_mask = None,
123
+ memory_key_padding_mask = None,
124
+ pos = None,
125
+ query_pos = None):
126
+ output = tgt+pos+query_pos
127
+
128
+ intermediate = []
129
+
130
+ for layer in self.layers:
131
+ output = layer(output, memory, tgt_mask=tgt_mask,
132
+ memory_mask=memory_mask,
133
+ tgt_key_padding_mask=tgt_key_padding_mask,
134
+ memory_key_padding_mask=memory_key_padding_mask,
135
+ pos=pos, query_pos=query_pos)
136
+ if self.return_intermediate:
137
+ intermediate.append(self.norm(output))
138
+
139
+ if self.norm is not None:
140
+ output = self.norm(output)
141
+ if self.return_intermediate:
142
+ intermediate.pop()
143
+ intermediate.append(output)
144
+
145
+ if self.return_intermediate:
146
+ return torch.stack(intermediate)
147
+
148
+ return output.unsqueeze(0)
149
+
150
+
151
+ class TransformerEncoderLayer(nn.Module):
152
+
153
+ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
154
+ activation="relu", normalize_before=False):
155
+ super().__init__()
156
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
157
+ # Implementation of Feedforward model
158
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
159
+ self.dropout = nn.Dropout(dropout)
160
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
161
+
162
+ self.norm1 = nn.LayerNorm(d_model)
163
+ self.norm2 = nn.LayerNorm(d_model)
164
+ self.dropout1 = nn.Dropout(dropout)
165
+ self.dropout2 = nn.Dropout(dropout)
166
+
167
+ self.activation = _get_activation_fn(activation)
168
+ self.normalize_before = normalize_before
169
+
170
+ def with_pos_embed(self, tensor, pos):
171
+ return tensor if pos is None else tensor + pos
172
+
173
+ def forward_post(self,
174
+ src,
175
+ src_mask = None,
176
+ src_key_padding_mask = None,
177
+ pos = None):
178
+ # q = k = self.with_pos_embed(src, pos)
179
+ src2 = self.self_attn(src, src, value=src, attn_mask=src_mask,
180
+ key_padding_mask=src_key_padding_mask)[0]
181
+ src = src + self.dropout1(src2)
182
+ src = self.norm1(src)
183
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
184
+ src = src + self.dropout2(src2)
185
+ src = self.norm2(src)
186
+ return src
187
+
188
+ def forward_pre(self, src,
189
+ src_mask = None,
190
+ src_key_padding_mask = None,
191
+ pos = None):
192
+ src2 = self.norm1(src)
193
+ # q = k = self.with_pos_embed(src2, pos)
194
+ src2 = self.self_attn(src2, src2, value=src2, attn_mask=src_mask,
195
+ key_padding_mask=src_key_padding_mask)[0]
196
+ src = src + self.dropout1(src2)
197
+ src2 = self.norm2(src)
198
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
199
+ src = src + self.dropout2(src2)
200
+ return src
201
+
202
+ def forward(self, src,
203
+ src_mask = None,
204
+ src_key_padding_mask = None,
205
+ pos = None):
206
+ if self.normalize_before:
207
+ return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
208
+ return self.forward_post(src, src_mask, src_key_padding_mask, pos)
209
+
210
+
211
+ class TransformerDecoderLayer(nn.Module):
212
+
213
+ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
214
+ activation="relu", normalize_before=False):
215
+ super().__init__()
216
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
217
+ self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
218
+ # Implementation of Feedforward model
219
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
220
+ self.dropout = nn.Dropout(dropout)
221
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
222
+
223
+ self.norm1 = nn.LayerNorm(d_model)
224
+ self.norm2 = nn.LayerNorm(d_model)
225
+ self.norm3 = nn.LayerNorm(d_model)
226
+ self.dropout1 = nn.Dropout(dropout)
227
+ self.dropout2 = nn.Dropout(dropout)
228
+ self.dropout3 = nn.Dropout(dropout)
229
+
230
+ self.activation = _get_activation_fn(activation)
231
+ self.normalize_before = normalize_before
232
+
233
+ def with_pos_embed(self, tensor, pos):
234
+ return tensor if pos is None else tensor + pos
235
+
236
+ def forward_post(self, tgt, memory,
237
+ tgt_mask = None,
238
+ memory_mask = None,
239
+ tgt_key_padding_mask = None,
240
+ memory_key_padding_mask = None,
241
+ pos = None,
242
+ query_pos = None):
243
+ # q = k = self.with_pos_embed(tgt, query_pos)
244
+ tgt2 = self.self_attn(tgt, tgt, value=tgt, attn_mask=tgt_mask,
245
+ key_padding_mask=tgt_key_padding_mask)[0]
246
+ tgt = tgt + self.dropout1(tgt2)
247
+ tgt = self.norm1(tgt)
248
+ tgt2 = self.multihead_attn(query=tgt,
249
+ key=memory,
250
+ value=memory, attn_mask=memory_mask,
251
+ key_padding_mask=memory_key_padding_mask)[0]
252
+ tgt = tgt + self.dropout2(tgt2)
253
+ tgt = self.norm2(tgt)
254
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
255
+ tgt = tgt + self.dropout3(tgt2)
256
+ tgt = self.norm3(tgt)
257
+ return tgt
258
+
259
+ def forward_pre(self, tgt, memory,
260
+ tgt_mask = None,
261
+ memory_mask = None,
262
+ tgt_key_padding_mask = None,
263
+ memory_key_padding_mask = None,
264
+ pos = None,
265
+ query_pos = None):
266
+ tgt2 = self.norm1(tgt)
267
+ # q = k = self.with_pos_embed(tgt2, query_pos)
268
+ tgt2 = self.self_attn(tgt2, tgt2, value=tgt2, attn_mask=tgt_mask,
269
+ key_padding_mask=tgt_key_padding_mask)[0]
270
+ tgt = tgt + self.dropout1(tgt2)
271
+ tgt2 = self.norm2(tgt)
272
+ tgt2 = self.multihead_attn(query=tgt2,
273
+ key=memory,
274
+ value=memory, attn_mask=memory_mask,
275
+ key_padding_mask=memory_key_padding_mask)[0]
276
+ tgt = tgt + self.dropout2(tgt2)
277
+ tgt2 = self.norm3(tgt)
278
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
279
+ tgt = tgt + self.dropout3(tgt2)
280
+ return tgt
281
+
282
+ def forward(self, tgt, memory,
283
+ tgt_mask = None,
284
+ memory_mask = None,
285
+ tgt_key_padding_mask = None,
286
+ memory_key_padding_mask = None,
287
+ pos = None,
288
+ query_pos = None):
289
+ if self.normalize_before:
290
+ return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
291
+ tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
292
+ return self.forward_post(tgt, memory, tgt_mask, memory_mask,
293
+ tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
294
+
295
+
296
+
297
+ class Audio2kpTransformer(nn.Module):
298
+ def __init__(self,opt):
299
+ super(Audio2kpTransformer, self).__init__()
300
+ self.opt = opt
301
+
302
+
303
+ self.embedding = nn.Embedding(41, opt.embedding_dim)
304
+ self.pos_enc = PositionalEncoding(512,20)
305
+ self.down_pose = AntiAliasInterpolation2d(1,0.25)
306
+ input_dim = 2
307
+ self.feature_extract = nn.Sequential(mydownres2Dblock(input_dim,32),
308
+ mydownres2Dblock(32,64),
309
+ mydownres2Dblock(64,128),
310
+ mydownres2Dblock(128,256),
311
+ mydownres2Dblock(256,512),
312
+ nn.AvgPool2d(2))
313
+
314
+ self.decode_dim = 70
315
+ self.audio_embedding = nn.Sequential(nn.ConvTranspose2d(1, 8, (29, 14), stride=(1, 1), padding=(0, 11)),
316
+ BatchNorm2d(8),
317
+ nn.ReLU(inplace=True),
318
+ nn.Conv2d(8, 35, (13, 13), stride=(1, 1), padding=(6, 6)))
319
+ self.decodefeature_extract = nn.Sequential(mydownres2Dblock(self.decode_dim,32),
320
+ mydownres2Dblock(32,64),
321
+ mydownres2Dblock(64,128),
322
+ mydownres2Dblock(128,256),
323
+ mydownres2Dblock(256,512),
324
+ nn.AvgPool2d(2))
325
+
326
+ self.transformer = Transformer()
327
+ self.kp = nn.Linear(512,opt.num_kp*2)
328
+ self.jacobian = nn.Linear(512,opt.num_kp*4)
329
+ self.jacobian.weight.data.zero_()
330
+ self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 1] * self.opt.num_kp, dtype=torch.float))
331
+ self.criterion = nn.L1Loss()
332
+
333
+ def create_sparse_motions(self, source_image, kp_source):
334
+ """
335
+ Eq 4. in the paper T_{s<-d}(z)
336
+ """
337
+ bs, _, h, w = source_image.shape
338
+ identity_grid = make_coordinate_grid((h, w), type=kp_source['value'].type())
339
+ identity_grid = identity_grid.view(1, 1, h, w, 2)
340
+ coordinate_grid = identity_grid
341
+ if 'jacobian' in kp_source:
342
+ jacobian = kp_source['jacobian']
343
+ jacobian = jacobian.unsqueeze(-3).unsqueeze(-3)
344
+ jacobian = jacobian.repeat(1, 1, h, w, 1, 1)
345
+ coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1))
346
+ coordinate_grid = coordinate_grid.squeeze(-1)
347
+
348
+ driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.opt.num_kp, 1, 1, 2)
349
+
350
+ #adding background feature
351
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1)
352
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1)
353
+
354
+ return sparse_motions.permute(0,1,4,2,3).reshape(bs,(self.opt.num_kp+1)*2,64,64)
355
+
356
+
357
+
358
+ def forward(self,x, initial_kp = None):
359
+ bs,seqlen = x["ph"].shape
360
+ ph = x["ph"].reshape(bs*seqlen,1)
361
+ pose = x["pose"].reshape(bs*seqlen,1,256,256)
362
+ input_feature = self.down_pose(pose)
363
+
364
+ phoneme_embedding = self.embedding(ph.long())
365
+ phoneme_embedding = phoneme_embedding.reshape(bs*seqlen, 1, 16, 16)
366
+ phoneme_embedding = F.interpolate(phoneme_embedding, scale_factor=4)
367
+ input_feature = torch.cat((input_feature, phoneme_embedding), dim=1)
368
+
369
+ input_feature = self.feature_extract(input_feature).unsqueeze(-1).reshape(bs,seqlen,512)
370
+
371
+ audio = x["audio"].reshape(bs * seqlen, 1, 4, 41)
372
+ decoder_feature = self.audio_embedding(audio)
373
+ decoder_feature = F.interpolate(decoder_feature, scale_factor=2)
374
+ decoder_feature = self.decodefeature_extract(torch.cat(
375
+ (decoder_feature,
376
+ initial_kp["feature_map"].unsqueeze(1).repeat(1, seqlen, 1, 1, 1).reshape(bs * seqlen, 35, 64, 64)),
377
+ dim=1)).unsqueeze(-1).reshape(bs, seqlen, 512)
378
+
379
+ posi_em = self.pos_enc(self.opt.num_w*2+1)
380
+
381
+
382
+ out = {}
383
+
384
+ output_feature = self.transformer(self.opt,input_feature,decoder_feature,posi_em)[-1,self.opt.num_w]
385
+
386
+ out["value"] = self.kp(output_feature).reshape(bs,self.opt.num_kp,2)
387
+ out["jacobian"] = self.jacobian(output_feature).reshape(bs,self.opt.num_kp,2,2)
388
+
389
+ return out
390
+
391
+
models/util.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+
3
+ import torch.nn.functional as F
4
+ import torch
5
+ import cv2
6
+ import numpy as np
7
+
8
+ from models.resnet import resnet34
9
+ from models.layers.residual import Res2dBlock,Res1dBlock,DownRes2dBlock
10
+
11
+ from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
12
+
13
+
14
+ def myres2Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "relu",order = "NACNAC"):
15
+ return Res2dBlock(indim,outdim,k_size,padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order)
16
+
17
+ def myres1Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "relu",order = "NACNAC"):
18
+ return Res1dBlock(indim,outdim,k_size,padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order)
19
+
20
+ def mydownres2Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "leakyrelu",order = "NACNAC"):
21
+ return DownRes2dBlock(indim,outdim,k_size,padding=padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order)
22
+
23
+ def gaussian2kp(heatmap):
24
+ """
25
+ Extract the mean and from a heatmap
26
+ """
27
+ shape = heatmap.shape
28
+ heatmap = heatmap.unsqueeze(-1)
29
+ grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0)
30
+ value = (heatmap * grid).sum(dim=(2, 3))
31
+ kp = {'value': value}
32
+
33
+ return kp
34
+
35
+ def kp2gaussian(kp, spatial_size, kp_variance):
36
+ """
37
+ Transform a keypoint into gaussian like representation
38
+ """
39
+ mean = kp['value'] #bs*numkp*2
40
+
41
+ coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) #h*w*2
42
+ number_of_leading_dimensions = len(mean.shape) - 1
43
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape #1*1*h*w*2
44
+ coordinate_grid = coordinate_grid.view(*shape)
45
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1)
46
+ coordinate_grid = coordinate_grid.repeat(*repeats) #bs*numkp*h*w*2
47
+
48
+ # Preprocess kp shape
49
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 2)
50
+ mean = mean.view(*shape)
51
+
52
+ mean_sub = (coordinate_grid - mean)
53
+
54
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
55
+
56
+ return out
57
+
58
+
59
+ def make_coordinate_grid(spatial_size, type):
60
+ """
61
+ Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
62
+ """
63
+ h, w = spatial_size
64
+ x = torch.arange(w).type(type)
65
+ y = torch.arange(h).type(type)
66
+
67
+ x = (2 * (x / (w - 1)) - 1)
68
+ y = (2 * (y / (h - 1)) - 1)
69
+
70
+ yy = y.view(-1, 1).repeat(1, w)
71
+ xx = x.view(1, -1).repeat(h, 1)
72
+
73
+ meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
74
+
75
+ return meshed
76
+
77
+
78
+ class ResBlock2d(nn.Module):
79
+ """
80
+ Res block, preserve spatial resolution.
81
+ """
82
+
83
+ def __init__(self, in_features, kernel_size, padding):
84
+ super(ResBlock2d, self).__init__()
85
+ self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
86
+ padding=padding)
87
+ self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
88
+ padding=padding)
89
+ self.norm1 = BatchNorm2d(in_features, affine=True)
90
+ self.norm2 = BatchNorm2d(in_features, affine=True)
91
+
92
+ def forward(self, x):
93
+ out = self.norm1(x)
94
+ out = F.relu(out,inplace=True)
95
+ out = self.conv1(out)
96
+ out = self.norm2(out)
97
+ out = F.relu(out,inplace=True)
98
+ out = self.conv2(out)
99
+ out += x
100
+ return out
101
+
102
+
103
+ class UpBlock2d(nn.Module):
104
+ """
105
+ Upsampling block for use in decoder.
106
+ """
107
+
108
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
109
+ super(UpBlock2d, self).__init__()
110
+
111
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
112
+ padding=padding, groups=groups)
113
+ self.norm = BatchNorm2d(out_features, affine=True)
114
+
115
+ def forward(self, x):
116
+ out = F.interpolate(x, scale_factor=2)
117
+ del x
118
+ out = self.conv(out)
119
+ out = self.norm(out)
120
+ out = F.relu(out,inplace=True)
121
+ return out
122
+
123
+
124
+ class DownBlock2d(nn.Module):
125
+ """
126
+ Downsampling block for use in encoder.
127
+ """
128
+
129
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
130
+ super(DownBlock2d, self).__init__()
131
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
132
+ padding=padding, groups=groups)
133
+ self.norm = BatchNorm2d(out_features, affine=True)
134
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
135
+
136
+ def forward(self, x):
137
+ out = self.conv(x)
138
+ del x
139
+ out = self.norm(out)
140
+ out = F.relu(out,inplace=True)
141
+ out = self.pool(out)
142
+ return out
143
+
144
+
145
+ class SameBlock2d(nn.Module):
146
+ """
147
+ Simple block, preserve spatial resolution.
148
+ """
149
+
150
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1):
151
+ super(SameBlock2d, self).__init__()
152
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features,
153
+ kernel_size=kernel_size, padding=padding, groups=groups)
154
+ self.norm = BatchNorm2d(out_features, affine=True)
155
+
156
+ def forward(self, x):
157
+ out = self.conv(x)
158
+ out = self.norm(out)
159
+ out = F.relu(out,inplace=True)
160
+ return out
161
+
162
+
163
+ class Encoder(nn.Module):
164
+ """
165
+ Hourglass Encoder
166
+ """
167
+
168
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
169
+ super(Encoder, self).__init__()
170
+
171
+ down_blocks = []
172
+ for i in range(num_blocks):
173
+ down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
174
+ min(max_features, block_expansion * (2 ** (i + 1))),
175
+ kernel_size=3, padding=1))
176
+ self.down_blocks = nn.ModuleList(down_blocks)
177
+
178
+ def forward(self, x):
179
+ outs = [x]
180
+ for down_block in self.down_blocks:
181
+ outs.append(down_block(outs[-1]))
182
+ return outs
183
+
184
+ class Decoder(nn.Module):
185
+ """
186
+ Hourglass Decoder
187
+ """
188
+
189
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
190
+ super(Decoder, self).__init__()
191
+
192
+ up_blocks = []
193
+
194
+ for i in range(num_blocks)[::-1]:
195
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
196
+ out_filters = min(max_features, block_expansion * (2 ** i))
197
+ up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))
198
+
199
+ self.up_blocks = nn.ModuleList(up_blocks)
200
+ self.out_filters = block_expansion + in_features
201
+
202
+ def forward(self, x):
203
+ out = x.pop()
204
+ for up_block in self.up_blocks:
205
+ out = up_block(out)
206
+ skip = x.pop()
207
+ out = torch.cat([out, skip], dim=1)
208
+ return out
209
+
210
+ class Hourglass(nn.Module):
211
+ """
212
+ Hourglass architecture.
213
+ """
214
+
215
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
216
+ super(Hourglass, self).__init__()
217
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
218
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
219
+ self.out_filters = self.decoder.out_filters
220
+
221
+ def forward(self, x):
222
+ return self.decoder(self.encoder(x))
223
+
224
+ class AntiAliasInterpolation2d(nn.Module):
225
+ """
226
+ Band-limited downsampling, for better preservation of the input signal.
227
+ """
228
+ def __init__(self, channels, scale):
229
+ super(AntiAliasInterpolation2d, self).__init__()
230
+ sigma = (1 / scale - 1) / 2
231
+ kernel_size = 2 * round(sigma * 4) + 1
232
+ self.ka = kernel_size // 2
233
+ self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka
234
+
235
+
236
+ kernel_size = [kernel_size, kernel_size]
237
+ sigma = [sigma, sigma]
238
+ # The gaussian kernel is the product of the
239
+ # gaussian function of each dimension.
240
+ kernel = 1
241
+ meshgrids = torch.meshgrid(
242
+ [
243
+ torch.arange(size, dtype=torch.float32)
244
+ for size in kernel_size
245
+ ]
246
+ )
247
+ for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
248
+ mean = (size - 1) / 2
249
+ kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2))
250
+
251
+ # Make sure sum of values in gaussian kernel equals 1.
252
+ kernel = kernel / torch.sum(kernel)
253
+ # Reshape to depthwise convolutional weight
254
+ kernel = kernel.view(1, 1, *kernel.size())
255
+ kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
256
+
257
+ self.register_buffer('weight', kernel)
258
+ self.groups = channels
259
+ self.scale = scale
260
+
261
+ def forward(self, input):
262
+ if self.scale == 1.0:
263
+ return input
264
+
265
+ out = F.pad(input, (self.ka, self.kb, self.ka, self.kb))
266
+ out = F.conv2d(out, weight=self.weight, groups=self.groups)
267
+ out = F.interpolate(out, scale_factor=(self.scale, self.scale))
268
+
269
+ return out
270
+
271
+ def draw_annotation_box( image, rotation_vector, translation_vector, color=(255, 255, 255), line_width=2):
272
+ """Draw a 3D box as annotation of pose"""
273
+
274
+ camera_matrix = np.array(
275
+ [[233.333, 0, 128],
276
+ [0, 233.333, 128],
277
+ [0, 0, 1]], dtype="double")
278
+
279
+ dist_coeefs = np.zeros((4, 1))
280
+
281
+ point_3d = []
282
+ rear_size = 75
283
+ rear_depth = 0
284
+ point_3d.append((-rear_size, -rear_size, rear_depth))
285
+ point_3d.append((-rear_size, rear_size, rear_depth))
286
+ point_3d.append((rear_size, rear_size, rear_depth))
287
+ point_3d.append((rear_size, -rear_size, rear_depth))
288
+ point_3d.append((-rear_size, -rear_size, rear_depth))
289
+
290
+ front_size = 100
291
+ front_depth = 100
292
+ point_3d.append((-front_size, -front_size, front_depth))
293
+ point_3d.append((-front_size, front_size, front_depth))
294
+ point_3d.append((front_size, front_size, front_depth))
295
+ point_3d.append((front_size, -front_size, front_depth))
296
+ point_3d.append((-front_size, -front_size, front_depth))
297
+ point_3d = np.array(point_3d, dtype=np.float).reshape(-1, 3)
298
+
299
+ # Map to 2d image points
300
+ (point_2d, _) = cv2.projectPoints(point_3d,
301
+ rotation_vector,
302
+ translation_vector,
303
+ camera_matrix,
304
+ dist_coeefs)
305
+ point_2d = np.int32(point_2d.reshape(-1, 2))
306
+
307
+ # Draw all the lines
308
+ cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA)
309
+ cv2.line(image, tuple(point_2d[1]), tuple(
310
+ point_2d[6]), color, line_width, cv2.LINE_AA)
311
+ cv2.line(image, tuple(point_2d[2]), tuple(
312
+ point_2d[7]), color, line_width, cv2.LINE_AA)
313
+ cv2.line(image, tuple(point_2d[3]), tuple(
314
+ point_2d[8]), color, line_width, cv2.LINE_AA)
315
+
316
+
317
+
318
+ class up_sample(nn.Module):
319
+ def __init__(self, scale_factor):
320
+ super(up_sample, self).__init__()
321
+ self.interp = nn.functional.interpolate
322
+ self.scale_factor = scale_factor
323
+
324
+ def forward(self, x):
325
+ x = self.interp(x, scale_factor=self.scale_factor,mode = 'linear',align_corners = True)
326
+ return x
327
+
328
+
329
+
330
+ class MyResNet34(nn.Module):
331
+ def __init__(self,embedding_dim,input_channel = 3):
332
+ super(MyResNet34, self).__init__()
333
+ self.resnet = resnet34(norm_layer = BatchNorm2d,num_classes=embedding_dim,input_channel = input_channel)
334
+ def forward(self, x):
335
+ return self.resnet(x)
336
+
337
+
338
+
339
+ class ImagePyramide(torch.nn.Module):
340
+ """
341
+ Create image pyramide for computing pyramide perceptual loss. See Sec 3.3
342
+ """
343
+ def __init__(self, scales, num_channels):
344
+ super(ImagePyramide, self).__init__()
345
+ downs = {}
346
+ for scale in scales:
347
+ downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale)
348
+ self.downs = nn.ModuleDict(downs)
349
+
350
+ def forward(self, x):
351
+ out_dict = {}
352
+ for scale, down_module in self.downs.items():
353
+ out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x)
354
+ return out_dict