Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
# Define a function for the Gradio interface
|
6 |
+
def predict_risk(Age, hOCP, hMisCrg, hHRT, CA125, HE4, FBS, USG):
|
7 |
+
# Load the trained model
|
8 |
+
model = joblib.load('RDF_OvCa_Final.joblib')
|
9 |
+
|
10 |
+
# Create a DataFrame with the input data
|
11 |
+
input_data = pd.DataFrame({
|
12 |
+
'Age': [Age],
|
13 |
+
'hOCP': [hOCP],
|
14 |
+
'hMisCrg': [hMisCrg],
|
15 |
+
'hHRT': [hHRT],
|
16 |
+
'CA125': [CA125],
|
17 |
+
'HE4': [HE4],
|
18 |
+
'FBS': [FBS],
|
19 |
+
'USG': [USG]
|
20 |
+
})
|
21 |
+
|
22 |
+
# Predict the probability of malignancy (class 1)
|
23 |
+
probability = model.predict_proba(input_data)[:, 1][0]
|
24 |
+
|
25 |
+
# Scale the risk score to -1 to +1
|
26 |
+
risk_score = 2 * probability - 1
|
27 |
+
|
28 |
+
# Determine the predicted status
|
29 |
+
status = "malignant" if probability >= cutoff else "benign"
|
30 |
+
|
31 |
+
result = f"The OvaCa Risk Score is {risk_score:.2f}. Based on it, the probability is more of {status} ({1 if status == 'malignant' else 0})."
|
32 |
+
|
33 |
+
return result
|
34 |
+
|
35 |
+
# Define the Gradio interface
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=predict_risk,
|
38 |
+
inputs=[
|
39 |
+
gr.inputs.Number(label="Age of patient in years"),
|
40 |
+
gr.inputs.Radio([0, 1], label="History of OCP intake (0: No 1: Yes)"),
|
41 |
+
gr.inputs.Radio([0, 1], label="History of Miscarriage (0: No 1: Yes)"),
|
42 |
+
gr.inputs.Radio([0, 1], label="History of HRT (0: No 1: Yes)"),
|
43 |
+
gr.inputs.Number(label="Serum CA125 level"),
|
44 |
+
gr.inputs.Number(label="Serum HE4 level"),
|
45 |
+
gr.inputs.Number(label="Serum Fasting Blood Sugar Level"),
|
46 |
+
gr.inputs.Radio([0, 1], label="USG Finding (0: Absent or Single Finding 1: More Than 1 Findings)")
|
47 |
+
],
|
48 |
+
outputs=gr.outputs.Textbox(label="Result (Risk Score on a Scale of -1 to +1, where >0 ~ Malignant)")
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the Gradio interface
|
52 |
+
iface.launch()
|