DoctorRobotnik commited on
Commit
eb0d2cd
·
1 Parent(s): 1f16d5c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1410.52 +/- 196.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e8bfb2c3a3714f333d36bc8303b91ef6f72570eaac8e8fa378e4d317e908076
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e2a019dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e2a019e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e2a019ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e2a019f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8e2a01d040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8e2a01d0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e2a01d160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e2a01d1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8e2a01d280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e2a01d310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e2a01d3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e2a01d430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8e2a01e400>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679674087082739844,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALQ9Tr/+ZKC+gVP0PhHYNb/xG05AWQ6rP/uGVL9X1MI9gpL3vozQzb+j8xO/NeiYPzkbBECcRxq/UJBbP6rxTL3UBJ4/JpA0vcbHv74OVZQ+ZCI5QNhMXcCphPU+LNGHPoL0gL+sZQQ/BYXrvx6Tdj/fMDq/JgD7v5Tq9cCjXEG/XmYPP0V3n8AfJDBADxdbPwsRCMBw1R7AouK/Pn6wfcC9uMQ/3tCAQGll0r9yyUY+ADzcv8Y/jj9oyUc/ea6QPJzvjkB2qS48ROpjvzzcaT2C9IC/bX/3v3MhCz+O5IS/39qKP3/CE7/20s4+r75tvg9TAT8rCUa+1GuWv8wElb90wis/Kb5JvW42Sz9VKT8/sjefv0+Etj7Bc7I+1Wxhv8lnF7/r4lm8W77IviIUWz+Xxiq/nsQwPBqpsT/OkT+/mhp+P6xlBD9zIQs/juSEv2B7Nj/2wUi/ye+dPhrOcD9YlQE+QJUoQLIPOT7h6Le/zV2lvkH57L/L+Yu/Qp7gPSfNPT/w/IO8e+JgP7bSqL70AaE/N4UBvq3d7DvmeCrAwCe8vmXjgMAG5OU/6cjuvYL0gL+sZQQ/BYXrvx6Tdj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADa1u+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY90KPgAAAABt8/a/AAAAAPA77T0AAAAAArv3PwAAAADItfI9AAAAAGJq9D8AAAAAdzX1PQAAAABD6fK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfenRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPE2oz0AAAAATI7fvwAAAACfzsC8AAAAAMjy9T8AAAAApXsvvQAAAADFjf4/AAAAAFOX8z0AAAAAKeT7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIw8BrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC9vCa9AAAAAFTl978AAAAAGYSPvQAAAABAwvE/AAAAANBjXL0AAAAAjLHcPwAAAACpdIK9AAAAAKlf3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgZKY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcSzDOwAAAADz8dy/AAAAAIpfET4AAAAAGO7/PwAAAAA9Gg29AAAAAP3J2j8AAAAAoubdvQAAAACX9PG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpsd70Fr2yMAWyUTegDjAF0lEdAqbV61/lQuXV9lChoBkdAmlFUidJ8OWgHTegDaAhHQKm5Q1BMSK51fZQoaAZHQJfd6By0a61oB03oA2gIR0CpuU5RKpT/dX2UKGgGR0CYoZe0ojOcaAdN6ANoCEdAqb7PFcY64nV9lChoBkdAljrAxSHdoGgHTegDaAhHQKnD62KEWZZ1fZQoaAZHQI26YDFId2hoB03oA2gIR0CpyNZiExqPdX2UKGgGR0COAGrtE5QxaAdN6ANoCEdAqcjj6k6903V9lChoBkdAk+WiEDhcaGgHTegDaAhHQKnNw7mMfih1fZQoaAZHQJFnlTBInShoB03oA2gIR0Cp0R7+98JEdX2UKGgGR0CB/RiI+GGmaAdN6ANoCEdAqdUOxhUip3V9lChoBkdAkDSxODaoM2gHTegDaAhHQKnVGf9P1th1fZQoaAZHQImgt+Vkc0doB03oA2gIR0Cp2jLwnYxtdX2UKGgGR0CGNxaY/mknaAdN6ANoCEdAqd6g/A0sOHV9lChoBkdAhGIf5tWMj2gHTegDaAhHQKnkr00WM0h1fZQoaAZHQJKyqalUIcBoB03oA2gIR0Cp5MCV0Lc9dX2UKGgGR0CRFYBqsU7CaAdN6ANoCEdAqeodbiZOSHV9lChoBkdAij1x1gYxcmgHTegDaAhHQKntgmeDnNh1fZQoaAZHQItsERcu8K5oB03oA2gIR0Cp8VKbKA8TdX2UKGgGR0CVlnLWZqmCaAdN6ANoCEdAqfFdnM+u/3V9lChoBkdAi/pabWmP52gHTegDaAhHQKn2ViJfpll1fZQoaAZHQIiayIUJv5xoB03oA2gIR0Cp+azXarWAdX2UKGgGR0CM7rVFQVKxaAdN6ANoCEdAqf9OICU5dXV9lChoBkdAgtivnSv1UWgHTegDaAhHQKn/Xwy6+WZ1fZQoaAZHQI3rDobGWD9oB03oA2gIR0CqBhRlxwQ2dX2UKGgGR0CRBN1jy4FzaAdN6ANoCEdAqgltB+nZTXV9lChoBkdAg0zVanrIHWgHTegDaAhHQKoNWBS1map1fZQoaAZHQI4dt7fHggpoB03oA2gIR0CqDWKo60Y1dX2UKGgGR0CMQWY4yXUpaAdN6ANoCEdAqhJkKb8WK3V9lChoBkdAkESvOhTOxGgHTegDaAhHQKoV0raufVZ1fZQoaAZHQJFb8QyylepoB03oA2gIR0CqGik4//vOdX2UKGgGR0B5EJKJ2t+1aAdN6ANoCEdAqho5FNL13HV9lChoBkdAeIelO45LiGgHTegDaAhHQKohpvLHMll1fZQoaAZHQI0kM56t1ZFoB03oA2gIR0CqJZStV7x/dX2UKGgGR0CIi8HdoFmnaAdN6ANoCEdAqiliEcsDn3V9lChoBkdAkae95hScb2gHTegDaAhHQKopbje9Ba91fZQoaAZHQJIHjASFoL5oB03oA2gIR0CqLksunMt9dX2UKGgGR0CG5Q43m3fAaAdN6ANoCEdAqjGeuaF23nV9lChoBkdAkLvZ5Rjz7WgHTegDaAhHQKo1Ux9oexR1fZQoaAZHQJJGAwpON5toB03oA2gIR0CqNV2UjcEedX2UKGgGR0CYrDuKoAGTaAdN6ANoCEdAqjulfkWAPXV9lChoBkdAl0kBNVR1o2gHTegDaAhHQKpAzRJmNBF1fZQoaAZHQIqKL1XeWOZoB03oA2gIR0CqROQtBfKIdX2UKGgGR0CX1nmhufmLaAdN6ANoCEdAqkTu4I8hcXV9lChoBkdAkxvOFHrhSGgHTegDaAhHQKpJxIV/MGJ1fZQoaAZHQJNySU+s5n1oB03oA2gIR0CqTTWiDdxidX2UKGgGR0CaNWT4+KTCaAdN6ANoCEdAqlD92/zreXV9lChoBkdAla+EiMYMv2gHTegDaAhHQKpRCMmWt2d1fZQoaAZHQJgjPhYNiH9oB03oA2gIR0CqVeF2vB8AdX2UKGgGR0CX/0ZmZmZmaAdN6ANoCEdAqlrKhrWRR3V9lChoBkdAkd0FnRLK3mgHTegDaAhHQKpgkJOWSlp1fZQoaAZHQJJ4yZPVNHpoB03oA2gIR0CqYJ7XpW3jdX2UKGgGR0CVSNdQfp2VaAdN6ANoCEdAqmVxCF9KEnV9lChoBkdAlTtmipNsWWgHTegDaAhHQKpouJEYwZh1fZQoaAZHQJiVwVsUIs1oB03oA2gIR0CqbILIPsiTdX2UKGgGR0CYBvKbKA8TaAdN6ANoCEdAqmyPIdU83nV9lChoBkdAmVxV5v99+mgHTegDaAhHQKpxf0VafSR1fZQoaAZHQJbApCrtE5RoB03oA2gIR0CqdRpkXk5qdX2UKGgGR0CU621ie/YbaAdN6ANoCEdAqnqljd56dHV9lChoBkdAlLgdCzC1qmgHTegDaAhHQKp6uLH+6y11fZQoaAZHQJON9RFZxJdoB03oA2gIR0CqgQquKXOXdX2UKGgGR0CY7ZnEl3QlaAdN6ANoCEdAqoRNayKNynV9lChoBkdAnSO92s7uD2gHTegDaAhHQKqIDQ9ic5N1fZQoaAZHQJmbJiRW915oB03oA2gIR0CqiBfKQq7RdX2UKGgGR0CX3sdGAkLQaAdN6ANoCEdAqozp0OmR/3V9lChoBkdAnHctq59Vm2gHTegDaAhHQKqQO0UoKD11fZQoaAZHQJwg+NipeeFoB03oA2gIR0CqlHE4WDYidX2UKGgGR0CaJwv60pmVaAdN6ANoCEdAqpSCGcnVonV9lChoBkdAl1LKgZjx1GgHTegDaAhHQKqb7KFIuoR1fZQoaAZHQJKL6UiY9gZoB03oA2gIR0Cqn9O7xusLdX2UKGgGR0CXq06u4gA7aAdN6ANoCEdAqqOMx20Re3V9lChoBkdAmoqonOSntWgHTegDaAhHQKqjl06o2n91fZQoaAZHQJZE0/OdGy5oB03oA2gIR0CqqF74i5d4dX2UKGgGR0Cav4FL39JjaAdN6ANoCEdAqquvDFZPmHV9lChoBkdAmTgz0+TvA2gHTegDaAhHQKqvae05U991fZQoaAZHQJpnBSwW30BoB03oA2gIR0Cqr3SfUWl/dX2UKGgGR0CZa/f6XSjQaAdN6ANoCEdAqrWKHVPN3XV9lChoBkdAmYhgN5MURGgHTegDaAhHQKq6uPaL4vh1fZQoaAZHQIMrNA3T/hloB03oA2gIR0CqvzTHsC1adX2UKGgGR0CYiPYq5LAYaAdN6ANoCEdAqr9ABLf1pXV9lChoBkdAe1kKw6hg3WgHTegDaAhHQKrETMCcPOJ1fZQoaAZHQJwUs0m+j/NoB03oA2gIR0Cqx63Wvr4WdX2UKGgGR0CMhErOJLuhaAdN6ANoCEdAqst3WFvhqHV9lChoBkdAnN2o9Pk7wWgHTegDaAhHQKrLgptrKvF1fZQoaAZHQJYxs0dilSFoB03oA2gIR0Cq0H4dIXj3dX2UKGgGR0CaCFdcB2fTaAdN6ANoCEdAqtVXTTfBN3V9lChoBkdAkF4Y7muDBmgHTegDaAhHQKrbEyjYZl51fZQoaAZHQJsOt3kgfU5oB03oA2gIR0Cq2x2attALdX2UKGgGR0CcbuT8YQ8PaAdN6ANoCEdAqt/vY4ACGXV9lChoBkdAl+b5TZQHiWgHTegDaAhHQKrjOews5GV1fZQoaAZHQJXbqtZFG5NoB03oA2gIR0Cq5wFoDgZTdX2UKGgGR0CZpO27FsHjaAdN6ANoCEdAqucNRWLgoHV9lChoBkdAlAPqvzOHFmgHTegDaAhHQKrr88/Uvwp1fZQoaAZHQJKp6GUOd5JoB03oA2gIR0Cq72OVxCIDdX2UKGgGR0CVlJtA9mpVaAdN6ANoCEdAqvToQQL/j3V9lChoBkdAl/K9x2jfvWgHTegDaAhHQKr0+STQmeF1fZQoaAZHQJOcdy8zyjJoB03oA2gIR0Cq+1wz1scidX2UKGgGR0CWqwof0VafaAdN6ANoCEdAqv6lDrqt5nV9lChoBkdAmVgr3oLXtmgHTegDaAhHQKsCbttQ9A51fZQoaAZHQJpNyk2xY7toB03oA2gIR0CrAnmdZq20dX2UKGgGR0CZgKRA8jiXaAdN6ANoCEdAqwdP7vXsgXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b07871699fdd7def6df4a8625e00b0a0ff5c0f86aa0c778ab015d2e8c70657b2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5297a7c0be4634cef8f8e7a89a17cc961a2d2526333118db05317b14a4466c2e
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e2a019dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e2a019e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e2a019ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e2a019f70>", "_build": "<function ActorCriticPolicy._build at 0x7f8e2a01d040>", "forward": "<function ActorCriticPolicy.forward at 0x7f8e2a01d0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e2a01d160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e2a01d1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8e2a01d280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e2a01d310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e2a01d3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e2a01d430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8e2a01e400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679674087082739844, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALQ9Tr/+ZKC+gVP0PhHYNb/xG05AWQ6rP/uGVL9X1MI9gpL3vozQzb+j8xO/NeiYPzkbBECcRxq/UJBbP6rxTL3UBJ4/JpA0vcbHv74OVZQ+ZCI5QNhMXcCphPU+LNGHPoL0gL+sZQQ/BYXrvx6Tdj/fMDq/JgD7v5Tq9cCjXEG/XmYPP0V3n8AfJDBADxdbPwsRCMBw1R7AouK/Pn6wfcC9uMQ/3tCAQGll0r9yyUY+ADzcv8Y/jj9oyUc/ea6QPJzvjkB2qS48ROpjvzzcaT2C9IC/bX/3v3MhCz+O5IS/39qKP3/CE7/20s4+r75tvg9TAT8rCUa+1GuWv8wElb90wis/Kb5JvW42Sz9VKT8/sjefv0+Etj7Bc7I+1Wxhv8lnF7/r4lm8W77IviIUWz+Xxiq/nsQwPBqpsT/OkT+/mhp+P6xlBD9zIQs/juSEv2B7Nj/2wUi/ye+dPhrOcD9YlQE+QJUoQLIPOT7h6Le/zV2lvkH57L/L+Yu/Qp7gPSfNPT/w/IO8e+JgP7bSqL70AaE/N4UBvq3d7DvmeCrAwCe8vmXjgMAG5OU/6cjuvYL0gL+sZQQ/BYXrvx6Tdj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADa1u+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY90KPgAAAABt8/a/AAAAAPA77T0AAAAAArv3PwAAAADItfI9AAAAAGJq9D8AAAAAdzX1PQAAAABD6fK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfenRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPE2oz0AAAAATI7fvwAAAACfzsC8AAAAAMjy9T8AAAAApXsvvQAAAADFjf4/AAAAAFOX8z0AAAAAKeT7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIw8BrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC9vCa9AAAAAFTl978AAAAAGYSPvQAAAABAwvE/AAAAANBjXL0AAAAAjLHcPwAAAACpdIK9AAAAAKlf3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgZKY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcSzDOwAAAADz8dy/AAAAAIpfET4AAAAAGO7/PwAAAAA9Gg29AAAAAP3J2j8AAAAAoubdvQAAAACX9PG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpsd70Fr2yMAWyUTegDjAF0lEdAqbV61/lQuXV9lChoBkdAmlFUidJ8OWgHTegDaAhHQKm5Q1BMSK51fZQoaAZHQJfd6By0a61oB03oA2gIR0CpuU5RKpT/dX2UKGgGR0CYoZe0ojOcaAdN6ANoCEdAqb7PFcY64nV9lChoBkdAljrAxSHdoGgHTegDaAhHQKnD62KEWZZ1fZQoaAZHQI26YDFId2hoB03oA2gIR0CpyNZiExqPdX2UKGgGR0COAGrtE5QxaAdN6ANoCEdAqcjj6k6903V9lChoBkdAk+WiEDhcaGgHTegDaAhHQKnNw7mMfih1fZQoaAZHQJFnlTBInShoB03oA2gIR0Cp0R7+98JEdX2UKGgGR0CB/RiI+GGmaAdN6ANoCEdAqdUOxhUip3V9lChoBkdAkDSxODaoM2gHTegDaAhHQKnVGf9P1th1fZQoaAZHQImgt+Vkc0doB03oA2gIR0Cp2jLwnYxtdX2UKGgGR0CGNxaY/mknaAdN6ANoCEdAqd6g/A0sOHV9lChoBkdAhGIf5tWMj2gHTegDaAhHQKnkr00WM0h1fZQoaAZHQJKyqalUIcBoB03oA2gIR0Cp5MCV0Lc9dX2UKGgGR0CRFYBqsU7CaAdN6ANoCEdAqeodbiZOSHV9lChoBkdAij1x1gYxcmgHTegDaAhHQKntgmeDnNh1fZQoaAZHQItsERcu8K5oB03oA2gIR0Cp8VKbKA8TdX2UKGgGR0CVlnLWZqmCaAdN6ANoCEdAqfFdnM+u/3V9lChoBkdAi/pabWmP52gHTegDaAhHQKn2ViJfpll1fZQoaAZHQIiayIUJv5xoB03oA2gIR0Cp+azXarWAdX2UKGgGR0CM7rVFQVKxaAdN6ANoCEdAqf9OICU5dXV9lChoBkdAgtivnSv1UWgHTegDaAhHQKn/Xwy6+WZ1fZQoaAZHQI3rDobGWD9oB03oA2gIR0CqBhRlxwQ2dX2UKGgGR0CRBN1jy4FzaAdN6ANoCEdAqgltB+nZTXV9lChoBkdAg0zVanrIHWgHTegDaAhHQKoNWBS1map1fZQoaAZHQI4dt7fHggpoB03oA2gIR0CqDWKo60Y1dX2UKGgGR0CMQWY4yXUpaAdN6ANoCEdAqhJkKb8WK3V9lChoBkdAkESvOhTOxGgHTegDaAhHQKoV0raufVZ1fZQoaAZHQJFb8QyylepoB03oA2gIR0CqGik4//vOdX2UKGgGR0B5EJKJ2t+1aAdN6ANoCEdAqho5FNL13HV9lChoBkdAeIelO45LiGgHTegDaAhHQKohpvLHMll1fZQoaAZHQI0kM56t1ZFoB03oA2gIR0CqJZStV7x/dX2UKGgGR0CIi8HdoFmnaAdN6ANoCEdAqiliEcsDn3V9lChoBkdAkae95hScb2gHTegDaAhHQKopbje9Ba91fZQoaAZHQJIHjASFoL5oB03oA2gIR0CqLksunMt9dX2UKGgGR0CG5Q43m3fAaAdN6ANoCEdAqjGeuaF23nV9lChoBkdAkLvZ5Rjz7WgHTegDaAhHQKo1Ux9oexR1fZQoaAZHQJJGAwpON5toB03oA2gIR0CqNV2UjcEedX2UKGgGR0CYrDuKoAGTaAdN6ANoCEdAqjulfkWAPXV9lChoBkdAl0kBNVR1o2gHTegDaAhHQKpAzRJmNBF1fZQoaAZHQIqKL1XeWOZoB03oA2gIR0CqROQtBfKIdX2UKGgGR0CX1nmhufmLaAdN6ANoCEdAqkTu4I8hcXV9lChoBkdAkxvOFHrhSGgHTegDaAhHQKpJxIV/MGJ1fZQoaAZHQJNySU+s5n1oB03oA2gIR0CqTTWiDdxidX2UKGgGR0CaNWT4+KTCaAdN6ANoCEdAqlD92/zreXV9lChoBkdAla+EiMYMv2gHTegDaAhHQKpRCMmWt2d1fZQoaAZHQJgjPhYNiH9oB03oA2gIR0CqVeF2vB8AdX2UKGgGR0CX/0ZmZmZmaAdN6ANoCEdAqlrKhrWRR3V9lChoBkdAkd0FnRLK3mgHTegDaAhHQKpgkJOWSlp1fZQoaAZHQJJ4yZPVNHpoB03oA2gIR0CqYJ7XpW3jdX2UKGgGR0CVSNdQfp2VaAdN6ANoCEdAqmVxCF9KEnV9lChoBkdAlTtmipNsWWgHTegDaAhHQKpouJEYwZh1fZQoaAZHQJiVwVsUIs1oB03oA2gIR0CqbILIPsiTdX2UKGgGR0CYBvKbKA8TaAdN6ANoCEdAqmyPIdU83nV9lChoBkdAmVxV5v99+mgHTegDaAhHQKpxf0VafSR1fZQoaAZHQJbApCrtE5RoB03oA2gIR0CqdRpkXk5qdX2UKGgGR0CU621ie/YbaAdN6ANoCEdAqnqljd56dHV9lChoBkdAlLgdCzC1qmgHTegDaAhHQKp6uLH+6y11fZQoaAZHQJON9RFZxJdoB03oA2gIR0CqgQquKXOXdX2UKGgGR0CY7ZnEl3QlaAdN6ANoCEdAqoRNayKNynV9lChoBkdAnSO92s7uD2gHTegDaAhHQKqIDQ9ic5N1fZQoaAZHQJmbJiRW915oB03oA2gIR0CqiBfKQq7RdX2UKGgGR0CX3sdGAkLQaAdN6ANoCEdAqozp0OmR/3V9lChoBkdAnHctq59Vm2gHTegDaAhHQKqQO0UoKD11fZQoaAZHQJwg+NipeeFoB03oA2gIR0CqlHE4WDYidX2UKGgGR0CaJwv60pmVaAdN6ANoCEdAqpSCGcnVonV9lChoBkdAl1LKgZjx1GgHTegDaAhHQKqb7KFIuoR1fZQoaAZHQJKL6UiY9gZoB03oA2gIR0Cqn9O7xusLdX2UKGgGR0CXq06u4gA7aAdN6ANoCEdAqqOMx20Re3V9lChoBkdAmoqonOSntWgHTegDaAhHQKqjl06o2n91fZQoaAZHQJZE0/OdGy5oB03oA2gIR0CqqF74i5d4dX2UKGgGR0Cav4FL39JjaAdN6ANoCEdAqquvDFZPmHV9lChoBkdAmTgz0+TvA2gHTegDaAhHQKqvae05U991fZQoaAZHQJpnBSwW30BoB03oA2gIR0Cqr3SfUWl/dX2UKGgGR0CZa/f6XSjQaAdN6ANoCEdAqrWKHVPN3XV9lChoBkdAmYhgN5MURGgHTegDaAhHQKq6uPaL4vh1fZQoaAZHQIMrNA3T/hloB03oA2gIR0CqvzTHsC1adX2UKGgGR0CYiPYq5LAYaAdN6ANoCEdAqr9ABLf1pXV9lChoBkdAe1kKw6hg3WgHTegDaAhHQKrETMCcPOJ1fZQoaAZHQJwUs0m+j/NoB03oA2gIR0Cqx63Wvr4WdX2UKGgGR0CMhErOJLuhaAdN6ANoCEdAqst3WFvhqHV9lChoBkdAnN2o9Pk7wWgHTegDaAhHQKrLgptrKvF1fZQoaAZHQJYxs0dilSFoB03oA2gIR0Cq0H4dIXj3dX2UKGgGR0CaCFdcB2fTaAdN6ANoCEdAqtVXTTfBN3V9lChoBkdAkF4Y7muDBmgHTegDaAhHQKrbEyjYZl51fZQoaAZHQJsOt3kgfU5oB03oA2gIR0Cq2x2attALdX2UKGgGR0CcbuT8YQ8PaAdN6ANoCEdAqt/vY4ACGXV9lChoBkdAl+b5TZQHiWgHTegDaAhHQKrjOews5GV1fZQoaAZHQJXbqtZFG5NoB03oA2gIR0Cq5wFoDgZTdX2UKGgGR0CZpO27FsHjaAdN6ANoCEdAqucNRWLgoHV9lChoBkdAlAPqvzOHFmgHTegDaAhHQKrr88/Uvwp1fZQoaAZHQJKp6GUOd5JoB03oA2gIR0Cq72OVxCIDdX2UKGgGR0CVlJtA9mpVaAdN6ANoCEdAqvToQQL/j3V9lChoBkdAl/K9x2jfvWgHTegDaAhHQKr0+STQmeF1fZQoaAZHQJOcdy8zyjJoB03oA2gIR0Cq+1wz1scidX2UKGgGR0CWqwof0VafaAdN6ANoCEdAqv6lDrqt5nV9lChoBkdAmVgr3oLXtmgHTegDaAhHQKsCbttQ9A51fZQoaAZHQJpNyk2xY7toB03oA2gIR0CrAnmdZq20dX2UKGgGR0CZgKRA8jiXaAdN6ANoCEdAqwdP7vXsgXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffd6b7fef98e6596b663b4c877bbb5b4b775619d9e062939c1d827110956e734
3
+ size 1092213
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1410.523730329529, "std_reward": 196.8102427856376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T17:23:06.287922"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:684034edabf48b47ff7862d7eeec938c5bcbe8e7b55461d427107209dcedfbcb
3
+ size 2136