File size: 1,970 Bytes
b5d4a68 837d036 b5d4a68 837d036 b5d4a68 837d036 b5d4a68 837d036 b5d4a68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: JackFram/llama-68m
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: recreate_llama_68M_vanilla
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# recreate_llama_68M_vanilla
This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json dataset.
It achieves the following results on the evaluation set:
- Loss: 9.5494
- Accuracy: 0.3512
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.3125 | 10 | 7.9370 | 0.3676 |
| No log | 0.625 | 20 | 8.6808 | 0.3478 |
| No log | 0.9375 | 30 | 10.9798 | 0.1029 |
| No log | 1.25 | 40 | 10.3023 | 0.2493 |
| No log | 1.5625 | 50 | 9.7688 | 0.3501 |
| No log | 1.875 | 60 | 9.6190 | 0.3510 |
| No log | 2.1875 | 70 | 9.5617 | 0.3510 |
| No log | 2.5 | 80 | 9.5470 | 0.3511 |
| No log | 2.8125 | 90 | 9.5487 | 0.3511 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|