File size: 2,144 Bytes
b5d4a68 f63a06e b5d4a68 5d9ef80 f63a06e 5d9ef80 b5d4a68 4cb2959 1d7c22a b5d4a68 4cb2959 b5d4a68 1d7c22a b5d4a68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: JackFram/llama-68m
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: recreate_llama_68M_vanilla
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# recreate_llama_68M_vanilla
This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3558
- Accuracy: 0.5820
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 3.406 | 0.2644 | 1000 | 3.2345 | 0.5035 |
| 2.8119 | 0.5288 | 2000 | 2.8216 | 0.5365 |
| 2.6076 | 0.7932 | 3000 | 2.6553 | 0.5501 |
| 2.4729 | 1.0576 | 4000 | 2.5761 | 0.5581 |
| 2.4323 | 1.3221 | 5000 | 2.5363 | 0.5617 |
| 2.3824 | 1.5865 | 6000 | 2.4913 | 0.5660 |
| 2.3719 | 1.8509 | 7000 | 2.4664 | 0.5686 |
| 2.3021 | 2.1153 | 8000 | 2.4404 | 0.5716 |
| 2.2848 | 2.3797 | 9000 | 2.4080 | 0.5755 |
| 2.2653 | 2.6441 | 10000 | 2.3834 | 0.5785 |
| 2.2447 | 2.9085 | 11000 | 2.3603 | 0.5811 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|