--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-uncased-hate-offensive-normal-speech-lr-1e-05 results: [] --- # bert-large-uncased-hate-offensive-normal-speech-lr-1e-05 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Accuracy: 0.9772 - Weighted f1: 0.9772 - Weighted recall: 0.9772 - Weighted precision: 0.9773 - Micro f1: 0.9772 - Micro recall: 0.9772 - Micro precision: 0.9772 - Macro f1: 0.9756 - Macro recall: 0.9755 - Macro precision: 0.9757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:| | 0.9139 | 1.0 | 153 | 0.4854 | 0.8111 | 0.8086 | 0.8111 | 0.8125 | 0.8111 | 0.8111 | 0.8111 | 0.7947 | 0.7932 | 0.8030 | | 0.2278 | 2.0 | 306 | 0.0775 | 0.9674 | 0.9675 | 0.9674 | 0.9683 | 0.9674 | 0.9674 | 0.9674 | 0.9652 | 0.9657 | 0.9655 | | 0.0582 | 3.0 | 459 | 0.1007 | 0.9772 | 0.9773 | 0.9772 | 0.9782 | 0.9772 | 0.9772 | 0.9772 | 0.9757 | 0.9754 | 0.9769 | | 0.0228 | 4.0 | 612 | 0.0727 | 0.9772 | 0.9772 | 0.9772 | 0.9773 | 0.9772 | 0.9772 | 0.9772 | 0.9756 | 0.9755 | 0.9757 | | 0.0159 | 5.0 | 765 | 0.1013 | 0.9739 | 0.9740 | 0.9739 | 0.9741 | 0.9739 | 0.9739 | 0.9739 | 0.9720 | 0.9719 | 0.9723 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.6.dev0 - Tokenizers 0.13.3