DrishtiSharma commited on
Commit
e8b70f8
·
1 Parent(s): 3f46cd1

End of training

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan-bs-16
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: gtzan
18
+ type: gtzan
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan-bs-16
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5229
36
+ - Accuracy: 0.87
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 15
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 2.1955 | 1.0 | 57 | 2.1119 | 0.44 |
69
+ | 1.6916 | 2.0 | 114 | 1.5973 | 0.61 |
70
+ | 1.1805 | 3.0 | 171 | 1.1849 | 0.74 |
71
+ | 1.0924 | 4.0 | 228 | 0.9771 | 0.7 |
72
+ | 0.7794 | 5.0 | 285 | 0.8201 | 0.78 |
73
+ | 0.6335 | 6.0 | 342 | 0.6969 | 0.82 |
74
+ | 0.6178 | 7.0 | 399 | 0.6632 | 0.84 |
75
+ | 0.4232 | 8.0 | 456 | 0.5841 | 0.83 |
76
+ | 0.3135 | 9.0 | 513 | 0.5960 | 0.82 |
77
+ | 0.198 | 10.0 | 570 | 0.5557 | 0.83 |
78
+ | 0.1651 | 11.0 | 627 | 0.5957 | 0.84 |
79
+ | 0.1191 | 12.0 | 684 | 0.5640 | 0.85 |
80
+ | 0.1267 | 13.0 | 741 | 0.5604 | 0.84 |
81
+ | 0.0784 | 14.0 | 798 | 0.5233 | 0.85 |
82
+ | 0.1076 | 15.0 | 855 | 0.5229 | 0.87 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.32.0.dev0
88
+ - Pytorch 2.0.1+cu118
89
+ - Datasets 2.14.3
90
+ - Tokenizers 0.13.3