--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hsb-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: [] - name: Test CER type: cer value: [] --- # wav2vec2-large-xls-r-300m-hsb-v3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6549 - Wer: 0.4827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.8951 | 3.23 | 100 | 3.6396 | 1.0 | | 3.314 | 6.45 | 200 | 3.2331 | 1.0 | | 3.1931 | 9.68 | 300 | 3.0947 | 0.9906 | | 1.7079 | 12.9 | 400 | 0.8865 | 0.8499 | | 0.6859 | 16.13 | 500 | 0.7994 | 0.7529 | | 0.4804 | 19.35 | 600 | 0.7783 | 0.7069 | | 0.3506 | 22.58 | 700 | 0.6904 | 0.6321 | | 0.2695 | 25.81 | 800 | 0.6519 | 0.5926 | | 0.222 | 29.03 | 900 | 0.7041 | 0.5720 | | 0.1828 | 32.26 | 1000 | 0.6608 | 0.5513 | | 0.1474 | 35.48 | 1100 | 0.7129 | 0.5319 | | 0.1269 | 38.71 | 1200 | 0.6664 | 0.5056 | | 0.1077 | 41.94 | 1300 | 0.6712 | 0.4942 | | 0.0934 | 45.16 | 1400 | 0.6467 | 0.4879 | | 0.0819 | 48.39 | 1500 | 0.6549 | 0.4827 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0