File size: 13,734 Bytes
390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 390d94d 22a7887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch,glob,os,requests
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from librosa.filters import mel as librosa_mel_fn
from scipy.io.wavfile import write
from scipy.special import softmax
from maha_tts.models.diff_model import load_diff_model
from maha_tts.models.autoregressive import load_TS_model
from maha_tts.models.vocoder import load_vocoder_model,infer_wav
from maha_tts.utils.audio import denormalize_tacotron_mel,normalize_tacotron_mel,load_wav_to_torch,dynamic_range_compression
from maha_tts.utils.stft import STFT
from maha_tts.utils.diffusion import SpacedDiffusion,get_named_beta_schedule,space_timesteps
from maha_tts.text.symbols import labels,text_labels,text_labels_en,code_labels,text_enc,text_dec,code_enc,code_dec,text_enc_en,text_dec_en
from maha_tts.text.cleaners import english_cleaners
from maha_tts.config import config
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'maha_tts', 'models')
DEFAULT_MODELS_DIR = '/Users/jaskaransingh/Desktop/MahaTTS/models/'
stft_fn = STFT(config.filter_length, config.hop_length, config.win_length)
mel_basis = librosa_mel_fn(
sr=config.sampling_rate, n_fft=config.filter_length, n_mels=config.n_mel_channels, fmin=config.mel_fmin, fmax=config.mel_fmax)
mel_basis = torch.from_numpy(mel_basis).float()
model_dirs= {
'Smolie':['https://huggingface.co/Dubverse/MahaTTS/resolve/main/maha_tts/pretrained_models/smolie/S2A/s2a_latest.pt',
'https://huggingface.co/Dubverse/MahaTTS/resolve/main/maha_tts/pretrained_models/smolie/T2S/t2s_best.pt'],
'Smolie-en':[''],
'Smolie-in':[''],
'hifigan':['https://huggingface.co/Dubverse/MahaTTS/resolve/main/maha_tts/pretrained_models/hifigan/g_02500000',
'https://huggingface.co/Dubverse/MahaTTS/resolve/main/maha_tts/pretrained_models/hifigan/config.json']
}
def download_file(url, filename):
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
# Check if the response was successful (status code 200)
response.raise_for_status()
with open(filename, 'wb') as file, tqdm(
desc=filename,
total=total_size,
unit='B',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in response.iter_content(chunk_size=1024):
# Write data to the file
file.write(data)
# Update the progress bar
bar.update(len(data))
print(f"Download complete: {filename}\n")
def download_model(name):
print('Downloading ',name," ....")
checkpoint_diff = os.path.join(DEFAULT_MODELS_DIR,name,'s2a_latest.pt')
checkpoint_ts = os.path.join(DEFAULT_MODELS_DIR,name,'t2s_best.pt')
checkpoint_voco = os.path.join(DEFAULT_MODELS_DIR,'hifigan','g_02500000')
voco_config_path = os.path.join(DEFAULT_MODELS_DIR,'hifigan','config.json')
os.makedirs(os.path.join(DEFAULT_MODELS_DIR,name),exist_ok=True)
if name == 'hifigan':
download_file(model_dirs[name][0],checkpoint_voco)
download_file(model_dirs[name][1],voco_config_path)
else:
download_file(model_dirs[name][0],checkpoint_diff)
download_file(model_dirs[name][1],checkpoint_ts)
def load_models(name,device=torch.device('cpu')):
'''
Load pre-trained models for different components of a text-to-speech system.
Args:
device (str): The target device for model loading (e.g., 'cpu' or 'cuda').
checkpoint_diff (str): File path to the pre-trained model checkpoint for the diffusion model.
checkpoint_ts (str): File path to the pre-trained model checkpoint for the text-to-semantic model.
checkpoint_voco (str): File path to the pre-trained model checkpoint for the vocoder model.
voco_config_path (str): File path to the configuration file for the vocoder model.
Returns:
diff_model (object): Loaded diffusion model for semantic-to-acoustic tokens.
ts_model (object): Loaded text-to-semantic model for converting text-to-semantic tokens.
vocoder (object): Loaded vocoder model for generating waveform from acoustic tokens.
diffuser (object): Configured diffuser object for use in the diffusion model.
'''
assert name in model_dirs, "no model name "+name
checkpoint_diff = os.path.join(DEFAULT_MODELS_DIR,name,'s2a_latest.pt')
checkpoint_ts = os.path.join(DEFAULT_MODELS_DIR,name,'t2s_best.pt')
checkpoint_voco = os.path.join(DEFAULT_MODELS_DIR,'hifigan','g_02500000')
voco_config_path = os.path.join(DEFAULT_MODELS_DIR,'hifigan','config.json')
# for i in [checkpoint_diff,checkpoint_ts,checkpoint_voco,voco_config_path]:
if not os.path.exists(checkpoint_diff) or not os.path.exists(checkpoint_ts):
download_model(name)
if not os.path.exists(checkpoint_voco) or not os.path.exists(voco_config_path):
download_model('hifigan')
diff_model = load_diff_model(checkpoint_diff,device)
ts_model = load_TS_model(checkpoint_ts,device,name)
vocoder = load_vocoder_model(voco_config_path,checkpoint_voco,device)
diffuser = load_diffuser()
return diff_model,ts_model,vocoder,diffuser
def infer_mel(model,timeshape,code,ref_mel,diffuser,temperature=1.0):
device = next(model.parameters()).device
code = code.to(device)
ref_mel =ref_mel.to(device)
output_shape = (1,80,timeshape)
noise = torch.randn(output_shape, device=code.device) * temperature
mel = diffuser.p_sample_loop(model, output_shape, noise=noise,
model_kwargs={'code_emb': code,'ref_clips':ref_mel},
progress=True)
return denormalize_tacotron_mel(mel)
def generate_semantic_tokens(
text,
model,
ref_mels,
language=None,
temp = 0.7,
top_p= None,
top_k= 1,
n_tot_steps = 1000,
device = None
):
semb = []
with torch.no_grad():
for n in tqdm(range(n_tot_steps)):
x = get_inputs(text,semb,ref_mels,device,model.name)
_,result = model(**x,language=language)
relevant_logits = result[0,:,-1]
if top_p is not None:
# faster to convert to numpy
original_device = relevant_logits.device
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
sorted_indices = np.argsort(relevant_logits)[::-1]
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
relevant_logits = relevant_logits.to(original_device)
if top_k is not None:
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
probs = F.softmax(relevant_logits / temp, dim=-1)
item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
semb.append(str(code_dec[item_next.item()]))
if semb[-1] == '<EST>' or semb[-1] == '<PAD>':
break
del relevant_logits, probs, item_next
semb = torch.tensor([int(i) for i in semb[:-1]])
return semb,result
def get_inputs(text,semb=[],ref_mels=[],device=torch.device('cpu'),name = 'Smolie-in'):
text = text.lower()
if name=='Smolie-en':
text_ids=[text_enc_en['<S>']]+[text_enc_en[i] for i in text.strip()]+[text_enc_en['<E>']]
else:
text_ids=[text_enc['<S>']]+[text_enc[i] for i in text.strip()]+[text_enc['<E>']]
semb_ids=[code_enc['<SST>']]+[code_enc[i] for i in semb]#+[tok_enc['<EST>']]
input_ids = text_ids+semb_ids
# pad_length = config.t2s_position-(len(text_ids)+len(semb_ids))
token_type_ids = [0]*len(text_ids)+[1]*len(semb_ids)#+[0]*pad_length
positional_ids = [i for i in range(len(text_ids))]+[i for i in range(len(semb_ids))]#+[0]*pad_length
# labels = [-100]*len(text_ids)+semb_ids+[-100]*pad_length
attention_mask = [1]*len(input_ids)#+[0]*pad_length
# input_ids += [tok_enc['<PAD>']]*pad_length
return {'text_ids':torch.tensor(text_ids).unsqueeze(0).to(device),'codes_ids':torch.tensor(semb_ids).unsqueeze(0).to(device),'ref_clips':normalize_tacotron_mel(ref_mels).to(device)}
def get_ref_mels(ref_clips):
ref_mels = []
for i in ref_clips:
ref_mels.append(get_mel(i)[0][:,:500])
ref_mels_padded = (torch.randn((len(ref_mels), 80, 500)))*1e-8
for i,mel in enumerate(ref_mels):
ref_mels_padded[i, :, :mel.size(1)] = mel
return ref_mels_padded.unsqueeze(0)
def get_mel(filepath):
audio, sampling_rate = load_wav_to_torch(filepath)
audio_norm = audio / config.MAX_WAV_VALUE
audio_norm = audio_norm.unsqueeze(0)
y = torch.autograd.Variable(audio_norm, requires_grad=False)
assert(torch.min(y.data) >= -1)
assert(torch.max(y.data) <= 1)
magnitudes, phases = stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(mel_basis, magnitudes)
mel_output = dynamic_range_compression(mel_output)
melspec = torch.squeeze(mel_output, 0)
energy = torch.norm(magnitudes, dim=1).squeeze(0)
return melspec,list(energy)
def infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder,language=None):
'''
Generate audio from the given text using a text-to-speech (TTS) pipeline.
Args:
text (str): The input text to be synthesized into speech.
ref_clips (list): A list of paths to reference audio clips, preferably more than 3 clips.
diffuser (object): A diffusion object used for denoising and guidance in the diffusion model. It should be obtained using load_diffuser.
diff_model: diffusion model for semantic-to-acoustic tokens.
ts_model: text-to-semantic model for converting text-to-semantic tokens.
vocoder: vocoder model for generating waveform from acoustic tokens.
Returns:
audio (numpy.ndarray): Generated audio waveform.
sampling_rate (int): Sampling rate of the generated audio.
Description:
The `infer_tts` function takes input text and reference audio clips, and processes them through a TTS pipeline.
It first performs text preprocessing and generates semantic tokens using the specified text synthesis model.
Then, it infers mel-spectrogram features using the diffusion model and the provided diffuser.
Finally, it generates audio from the mel-spectrogram using the vocoder.
Note: The function requires properly configured diff_model, ts_model, and vocoder objects for successful TTS.
Example usage:
audio, sampling_rate = infer_tts("Hello, how are you?", ref_clips, diffuser, diff_model, ts_model, vocoder)
'''
device = next(ts_model.parameters()).device
text = english_cleaners(text)
ref_mels = get_ref_mels(ref_clips)
with torch.no_grad():
sem_tok,_ = generate_semantic_tokens(
text,
ts_model,
ref_mels,
language,
temp = 0.7,
top_p= 0.8,
top_k= 5,
n_tot_steps = 1000,
device = device
)
mel = infer_mel(diff_model,int(((sem_tok.shape[-1] * 320 / 16000) * 22050/256)+1),sem_tok.unsqueeze(0) + 1,
normalize_tacotron_mel(ref_mels),diffuser,temperature=0.5)
audio = infer_wav(mel,vocoder)
return audio,config.sampling_rate
def load_diffuser(timesteps = 100, guidance=3):
'''
Load and configure a diffuser for denoising and guidance in the diffusion model.
Args:
timesteps (int): Number of denoising steps out of 1000. Default is 100.
guidance (int): Conditioning-free guidance parameter. Default is 3.
Returns:
diffuser (object): Configured diffuser object for use in the diffusion model.
Description:
The `load_diffuser` function initializes a diffuser with specific settings for denoising and guidance.
'''
betas = get_named_beta_schedule('linear',config.sa_timesteps_max)
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(1000, [timesteps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='rescaled_mse', betas=betas,
conditioning_free=True, conditioning_free_k=guidance)
diffuser.training=False
return diffuser
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
text = 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition.'
ref_clips = glob.glob('/Users/jaskaransingh/Desktop/maha_tts/ref_clips/*.wav')
checkpoint_diff = 'maha_tts/pretrained_models/S2A/s2a_latest.pt'
checkpoint_ts = 'maha_tts/pretrained_models/T2S/t2s_best.pt'
checkpoint_voco = 'maha_tts/pretrained_models/hifigan/g_02500000'
voco_config_path = 'maha_tts/pretrained_models/hifigan/config.json'
diffuser = load_diffuser()
diff_model,ts_model,vocoder = load_models(device,checkpoint_diff,checkpoint_ts,checkpoint_voco,voco_config_path)
audio,sr = infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder)
write('test.wav',sr,audio)
|