import sys import tkinter as tk from tkinter import filedialog, messagebox, ttk from PIL import Image as PILImage, ImageTk import os import queue import threading import torch from transformers import AutoModelForCausalLM, LlamaTokenizer import json import traceback import math from concurrent.futures import ThreadPoolExecutor, as_completed torch.set_grad_enabled(False) stop_processing = False error_messages = [] selected_files = [] save_directory = "" caption_window = None caption_frame = None thumbnails = [] caption_text_widgets = [] error_window = None status_var = None num_files_var = None errors_var = None progress = None prompt_var = None max_new_tokens_var = None do_sample_var = None temperature_var = None top_k_var = None top_p_var = None thread_count_var = None precision_var = None batch_size_var = None prepend_text_var = None append_text_var = None caption_handling_var = None # Variable to handle radio buttons for caption handling start_button = None stop_button = None model = None prompt_entry = None select_files_button = None show_captions_button = None thread_count_entry = None precision_entry = None batch_size_entry = None prepend_text_entry = None append_text_entry = None root = None q = queue.Queue() current_page = 0 images_per_page = 20 total_pages = 1 content_canvas = None search_var = None original_selected_files = [] action_var = None action_entry = None def load_model(): global model, tokenizer if model is None: tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5') bit_precision = bit_precision_var.get() load_in_4bit = load_in_8bit = False # Thiết lập torch_type dựa trên giá trị bit_precision if bit_precision == 4: load_in_4bit = True torch_type = torch.float16 # Dùng float16 khi sử dụng bitsandbytes elif bit_precision == 8: load_in_8bit = True torch_type = torch.float16 # Dùng float16 khi sử dụng bitsandbytes elif bit_precision == 16: torch_type = torch.float16 elif bit_precision == 32: torch_type = torch.float32 try: import bitsandbytes as bnb model = AutoModelForCausalLM.from_pretrained( 'THUDM/cogvlm-chat-hf', torch_dtype=torch_type, low_cpu_mem_usage=True, load_in_4bit=load_in_4bit, load_in_8bit=load_in_8bit, trust_remote_code=True, ) except ImportError: # Nếu không có bitsandbytes hoặc dùng 16-bit hoặc 32-bit model = AutoModelForCausalLM.from_pretrained( 'THUDM/cogvlm-chat-hf', torch_dtype=torch_type, low_cpu_mem_usage=True, trust_remote_code=True, ) # Chỉ chuyển mô hình sang GPU nếu không sử dụng chế độ 4-bit hoặc 8-bit if not load_in_4bit and not load_in_8bit: model = model.to(torch.device('cuda')) # Đảm bảo chuyển đổi mô hình sang float32 nếu đang ở chế độ 32-bit if bit_precision == 32: model = model.to(torch.float32) elif bit_precision == 16: model = model.to(torch.float16) model.eval() # Kiểm tra thông tin model nạp vào print(f"Model loaded with dtype: {torch_type}, 4bit: {load_in_4bit}, 8bit: {load_in_8bit}") def update_and_save_config(): top_p_value = top_p_var.get() if do_sample_var.get() else None config_entry = { 'prompt': prompt_var.get(), 'max_new_tokens': max_new_tokens_var.get(), 'temperature': temperature_var.get(), 'top_k': top_k_var.get(), 'top_p': float(top_p_value) if top_p_value is not None else None, 'bit_precision': bit_precision_var.get(), # Tải bit_precision 'thread_count': thread_count_var.get(), 'batch_size': batch_size_var.get(), 'prepend_text': prepend_text_var.get(), 'append_text': append_text_var.get(), 'caption_handling': caption_handling_var.get() } try: with open('captions.json', 'w') as f: json.dump(config_entry, f, indent=2) except Exception as e: print(f"Error saving config to captions.json: {e}") def load_config_from_json(): try: if os.path.exists('captions.json'): with open('captions.json', 'r') as f: config_entry = json.load(f) prompt_var.set(config_entry.get('prompt', '')) max_new_tokens_var.set(config_entry.get('max_new_tokens', 200)) temperature_var.set(config_entry.get('temperature', 1.0)) top_k_var.set(config_entry.get('top_k', 50)) top_p_var.set(config_entry.get('top_p', 0.95)) bit_precision_var.set(config_entry.get('bit_precision', 8)) # Tải bit_precision thread_count_var.set(config_entry.get('thread_count', 1)) batch_size_var.set(config_entry.get('batch_size', 1)) prepend_text_var.set(config_entry.get('prepend_text', '')) append_text_var.set(config_entry.get('append_text', '')) caption_handling_var.set(config_entry.get('caption_handling', 'skip')) prompt_entry.delete("1.0", tk.END) prompt_entry.insert(tk.END, config_entry.get('prompt', '')) except Exception as e: print(f"Error loading config from captions.json: {e}") def on_config_change(*args): root.after(100, update_config) def update_config(): try: precision_value = precision_var.get() if precision_value == "": return # Không làm gì nếu giá trị là chuỗi rỗng update_and_save_config() except Exception as e: print(f"Lỗi khi xử lý giá trị: {e}") def on_prompt_change(event=None): prompt_var.set(prompt_entry.get("1.0", tk.END).strip()) update_and_save_config() def show_errors(): global error_window if error_window is not None: return error_window = tk.Toplevel(root) error_window.title("Error Details") error_window.geometry("500x400") error_text = tk.Text(error_window, wrap='word') error_text.pack(expand=True, fill='both') if error_messages: for error in error_messages: error_text.insert('end', error + '\n') else: error_text.insert('end', "No errors recorded.") error_text.config(state='disabled') def on_close_error_window(): global error_window error_window.destroy() error_window = None error_window.protocol("WM_DELETE_WINDOW", on_close_error_window) def validate_numeric_input(value): if value == "" or value == "-": return True try: float(value) return True except ValueError: return False def center_window(window): window.update_idletasks() width = window.winfo_width() height = window.winfo_height() x = (window.winfo_screenwidth() // 2) - (width // 2) y = (window.winfo_screenheight() // 2) - (height // 2) window.geometry(f'{width}x{height}+{x}+{y}') def toggle_sampling_options(): if do_sample_var.get(): temperature_label.pack(pady=5, after=do_sample_check) temperature_entry.pack(pady=5, after=temperature_label) top_k_label.pack(pady=5, after=temperature_entry) top_k_entry.pack(pady=5, after=top_k_label) top_p_label.pack(pady=5, after=top_k_entry) top_p_entry.pack(pady=5, after=top_p_label) root.geometry(f"{root.winfo_width()}x{root.winfo_height() + 150}") else: temperature_label.pack_forget() temperature_entry.pack_forget() top_k_label.pack_forget() top_k_entry.pack_forget() top_p_label.pack_forget() top_p_entry.pack_forget() root.geometry(f"{root.winfo_width()}x{root.winfo_height() - 150}") center_window(root) def open_image_to_caption(): global bit_precision_var, root global initial_bit_precision global app_initialized global stop_processing, error_messages, selected_files, save_directory, status_var, num_files_var, errors_var, progress global prompt_var, max_new_tokens_var, do_sample_var, temperature_var, top_k_var, top_p_var, thread_count_var, precision_var, batch_size_var global prepend_text_var, append_text_var, search_var, action_var, caption_handling_var global start_button, stop_button global temperature_label, temperature_entry, top_k_label, top_k_entry, top_p_label, top_p_entry global do_sample_check, prompt_entry, select_files_button, show_captions_button, thread_count_entry, precision_entry, batch_size_entry global prepend_text_entry, append_text_entry global q app_initialized = False # Định nghĩa hàm xử lý khi bit_precision thay đổi def on_bit_precision_change(*args): if not app_initialized: return update_and_save_config() result = messagebox.showinfo( "Bit Precision Changed", "You have changed the bit precision. Please restart the app for the changes to take effect." ) if result == "ok": root.destroy() # Tắt ứng dụng hiện tại python = sys.executable os.execl(python, python, "main.py") # Initialize the main Tkinter root window root = tk.Tk() root.title("Image to Caption") root.geometry("1050x950") # Khởi tạo các biến Tkinter sau khi root đã được tạo status_var = tk.StringVar() num_files_var = tk.StringVar() errors_var = tk.StringVar(value="Errors: 0") progress = tk.IntVar() prompt_var = tk.StringVar(value="Describe this image") max_new_tokens_var = tk.IntVar(value=200) do_sample_var = tk.BooleanVar(value=False) temperature_var = tk.DoubleVar(value=1.0) top_k_var = tk.IntVar(value=50) top_p_var = tk.DoubleVar(value=0.95) thread_count_var = tk.IntVar(value=1) precision_var = tk.IntVar(value=1) batch_size_var = tk.IntVar(value=1) prepend_text_var = tk.StringVar() append_text_var = tk.StringVar() caption_handling_var = tk.StringVar(value='skip') # Default value is 'skip' search_var = tk.StringVar() # Biến search_var khởi tạo ở đây action_var = tk.StringVar() # Biến action_var khởi tạo ở đây bit_precision_var = tk.IntVar(value=8) initial_bit_precision = bit_precision_var.get() q = queue.Queue() validate_cmd = root.register(validate_numeric_input) back_button = tk.Button(root, text="<-", font=('Helvetica', 14), command=return_to_menu) back_button.pack(anchor='nw', padx=10, pady=10) title_label = tk.Label(root, text="Image Caption Generator", font=('Helvetica', 16)) title_label.pack(pady=10) warning_label = tk.Label(root, text="NOTE: 4-bit requires 20GB of RAM and 12GB of VRAM, 8-bit requires 20GB of RAM and 16GB of VRAM, 16-bit requires 50GB of RAM and 24GB of VRAM, 32-bit requires 85GB of RAM and 40GB of VRAM. Although GPUs with less VRAM can still run, the performance will be very slow.", font=('Helvetica', 10), fg="red", wraplength=850, justify="left") warning_label.pack(pady=10) select_files_button = tk.Button(root, text="Select Files", command=select_files) select_files_button.pack(pady=10) show_captions_button = tk.Button(root, text="Show Captions", command=open_caption_window) show_captions_button.pack(pady=10) num_files_label = tk.Label(root, textvariable=num_files_var) num_files_label.pack(pady=5) bit_frame = tk.Frame(root) bit_frame.pack(pady=5) bit_label = tk.Label(bit_frame, text="Select Bit Precision:") bit_label.pack(side="left", padx=10) tk.Radiobutton(bit_frame, text="4-bit", variable=bit_precision_var, value=4).pack(side="left", padx=5) tk.Radiobutton(bit_frame, text="8-bit", variable=bit_precision_var, value=8).pack(side="left", padx=5) tk.Radiobutton(bit_frame, text="16-bit", variable=bit_precision_var, value=16).pack(side="left", padx=5) tk.Radiobutton(bit_frame, text="32-bit", variable=bit_precision_var, value=32).pack(side="left", padx=5) prompt_label = tk.Label(root, text="Prompt (text to describe the image):") prompt_label.pack(pady=5) prompt_entry = tk.Text(root, height=3, wrap='word', width=60) prompt_entry.pack(pady=5, padx=10, fill='both', expand=True) prompt_entry.bind('', on_prompt_change) prepend_text_label = tk.Label(root, text="Prepend Text:") prepend_text_label.pack(pady=5) prepend_text_entry = tk.Entry(root, textvariable=prepend_text_var, justify='center', width=60) prepend_text_entry.pack(pady=5) append_text_label = tk.Label(root, text="Append Text:") append_text_label.pack(pady=5) append_text_entry = tk.Entry(root, textvariable=append_text_var, justify='center', width=60) append_text_entry.pack(pady=5) # Thêm các radio button để xử lý caption khi ảnh đã có caption caption_handling_label = tk.Label(root, text="If a caption already exists for an image:", font=('Helvetica', 12)) caption_handling_label.pack(pady=5) # Frame chứa các radio button options_frame = tk.Frame(root) options_frame.pack(pady=5) # Radio buttons overwrite_radio = tk.Radiobutton(options_frame, text="Overwrite existing caption", variable=caption_handling_var, value='overwrite') overwrite_radio.pack(side="left", padx=10) append_radio = tk.Radiobutton(options_frame, text="Append to existing caption", variable=caption_handling_var, value='append') append_radio.pack(side="left", padx=10) skip_radio = tk.Radiobutton(options_frame, text="Skip images with existing caption", variable=caption_handling_var, value='skip') skip_radio.pack(side="left", padx=10) bit_precision_var.trace('w', on_bit_precision_change) load_config_from_json() app_initialized = True prompt_var.trace('w', on_config_change) max_new_tokens_var.trace('w', on_config_change) temperature_var.trace('w', on_config_change) top_k_var.trace('w', on_config_change) top_p_var.trace('w', on_config_change) precision_var.trace('w', on_config_change) thread_count_var.trace('w', on_config_change) batch_size_var.trace('w', on_config_change) prepend_text_var.trace('w', on_config_change) append_text_var.trace('w', on_config_change) caption_handling_var.trace('w', on_config_change) # Trace for the caption handling radio buttons max_new_tokens_label = tk.Label(root, text="Max New Tokens (max number of tokens to generate):") max_new_tokens_label.pack(pady=5) max_new_tokens_entry = tk.Entry(root, textvariable=max_new_tokens_var, justify='center', width=5, validate='key', validatecommand=(validate_cmd, '%P')) max_new_tokens_entry.pack(pady=5) do_sample_check = tk.Checkbutton(root, text="Do Sample (random sampling):", variable=do_sample_var, command=toggle_sampling_options) do_sample_check.pack(pady=5) temperature_label = tk.Label(root, text="Temperature (control randomness of sampling):") top_k_label = tk.Label(root, text="Top-k (consider top k tokens):") top_p_label = tk.Label(root, text="Top-p (consider tokens with cumulative probability p):") temperature_entry = tk.Entry(root, textvariable=temperature_var, justify='center', width=5, validate='key', validatecommand=(validate_cmd, '%P')) top_k_entry = tk.Entry(root, textvariable=top_k_var, justify='center', width=5, validate='key', validatecommand=(validate_cmd, '%P')) top_p_entry = tk.Entry(root, textvariable=top_p_var, justify='center', width=5, validate='key', validatecommand=(validate_cmd, '%P')) # Frame to hold all three horizontally aligned elements horizontal_frame = tk.Frame(root) horizontal_frame.pack(pady=5, padx=5) thread_count_label = tk.Label(horizontal_frame, text="Thread Count (number of threads to use):") thread_count_label.pack(side=tk.LEFT, padx=5) thread_count_entry = tk.Entry(horizontal_frame, textvariable=thread_count_var, justify='center', width=5, validate='key', validatecommand=(validate_cmd, '%P')) thread_count_entry.pack(side=tk.LEFT, padx=5) batch_size_label = tk.Label(horizontal_frame, text="Batch Size (number of images to process at once):") batch_size_label.pack(side=tk.LEFT, padx=5) batch_size_entry = tk.Entry(horizontal_frame, textvariable=batch_size_var, justify='center', width=5, validate='key', validatecommand=(validate_cmd, '%P')) batch_size_entry.pack(side=tk.LEFT, padx=5) errors_button = tk.Button(root, textvariable=errors_var, command=show_errors) errors_button.pack(pady=10) start_button = tk.Button(root, text="Generate Captions", command=lambda: [process_files(), update_and_save_config()]) start_button.pack(pady=10) stop_button = tk.Button(root, text="Stop", command=stop_processing_func) stop_button.pack(pady=10) progress_bar = ttk.Progressbar(root, variable=progress, maximum=100) progress_bar.pack(pady=10, fill=tk.X) status_label = tk.Label(root, textvariable=status_var, fg="green") status_label.pack(pady=5) center_window(root) root.protocol("WM_DELETE_WINDOW", on_closing) root.mainloop() def select_files(): global selected_files, save_directory, total_pages, original_selected_files filetypes = [("All Image files", "*.jpg;*.jpeg;*.png;*.gif;*.bmp;*.tiff;*.tif;*.svg;*.webp")] filepaths = filedialog.askopenfilenames(title="Select Image Files", filetypes=filetypes) if filepaths: selected_files.clear() selected_files.extend(filepaths) original_selected_files = selected_files.copy() validate_selected_files() num_files_var.set(f"{len(selected_files)} files selected.") save_directory = os.path.dirname(selected_files[0]) total_pages = (len(selected_files) + images_per_page - 1) // images_per_page if caption_window is not None: update_image_preview(content_canvas) def validate_selected_files(): global selected_files, num_files_var selected_files = [file for file in selected_files if os.path.exists(file)] num_files_var.set(f"{len(selected_files)} files selected.") def toggle_buttons(state): state = tk.NORMAL if state else tk.DISABLED select_files_button.config(state=state) show_captions_button.config(state=state) prompt_entry.config(state=state) prepend_text_entry.config(state=state) append_text_entry.config(state=state) do_sample_check.config(state=state) temperature_entry.config(state=state) top_k_entry.config(state=state) top_p_entry.config(state=state) thread_count_entry.config(state=state) batch_size_entry.config(state=state) start_button.config(state=state) stop_button.config(state=tk.NORMAL) def generate_caption(image_path, save_directory, q): if stop_processing: return try: load_model() filename = os.path.splitext(os.path.basename(image_path))[0] caption_file_path = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption # Kiểm tra các lựa chọn của người dùng if os.path.exists(caption_file_path): if caption_handling_var.get() == 'skip': q.put(image_path) return elif caption_handling_var.get() == 'append': with open(caption_file_path, 'r', encoding='utf-8') as f: existing_caption = f.read() else: existing_caption = "" else: existing_caption = "" # Xử lý ảnh trên CPU trước khi chuyển lên GPU image = PILImage.open(image_path).convert('RGB') if not isinstance(image, PILImage.Image): raise ValueError(f"Expected image to be of type PIL.Image.Image, but got {type(image)}") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Kiểm tra nếu bit_precision là 4 hoặc 8 if bit_precision_var.get() in [4, 8]: # Không sử dụng `.to()` cho mô hình khi đang ở chế độ 4-bit hoặc 8-bit pass else: model.to(device) # Xử lý dtype và inputs tương ứng inputs = model.build_conversation_input_ids( tokenizer, query=prompt_var.get(), history=[], images=[image] ) # Điều chỉnh dtype dựa trên bit_precision if bit_precision_var.get() == 32: image_tensor = inputs['images'][0].to(device).to(torch.float32) else: image_tensor = inputs['images'][0].to(device).to(torch.float16) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to(device), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(device), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(device), 'images': [[image_tensor]], } gen_kwargs = { "max_new_tokens": max_new_tokens_var.get(), "do_sample": do_sample_var.get(), "temperature": temperature_var.get(), "top_k": top_k_var.get(), "top_p": top_p_var.get() if do_sample_var.get() else None, "num_beams": precision_var.get() } # Sử dụng torch.amp.autocast để cải thiện hiệu suất trên GPU with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16 if bit_precision_var.get() != 32 else torch.float32): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] new_caption = tokenizer.decode(outputs[0], skip_special_tokens=True) final_caption = f"{prepend_text_var.get()} {existing_caption} {new_caption} {append_text_var.get()}".strip() with open(caption_file_path, 'w', encoding='utf-8') as file: file.write(final_caption) q.put(image_path) except torch.cuda.OutOfMemoryError as e: torch.cuda.empty_cache() error_message = f"CUDA OutOfMemoryError: {traceback.format_exc()}" print(error_message) q.put(error_message) error_messages.append(error_message) except Exception as e: error_message = f"Error processing image {image_path}: {traceback.format_exc()}" print(error_message) q.put(error_message) error_messages.append(error_message) finally: if stop_processing or bit_precision_var.get() not in [4, 8]: model.to('cpu') torch.cuda.empty_cache() def worker(save_directory, num_threads, batch_size): try: progress.set(0) num_batches = math.ceil(len(selected_files) / batch_size) batch_size_per_thread = max(1, batch_size // num_threads) def process_batch(thread_batch): generate_captions_for_batch(thread_batch, save_directory, q) with ThreadPoolExecutor(max_workers=num_threads) as executor: for batch_index in range(num_batches): if stop_processing: break start_index = batch_index * batch_size end_index = min(start_index + batch_size, len(selected_files)) batch = selected_files[start_index:end_index] futures = [] for i in range(0, len(batch), batch_size_per_thread): thread_batch = batch[i:i + batch_size_per_thread] futures.append(executor.submit(process_batch, thread_batch)) # Đợi các công việc trong batch hiện tại hoàn thành for future in as_completed(futures): try: future.result() # Xử lý lỗi nếu có xảy ra trong quá trình xử lý batch except Exception as e: q.put(f"Error processing batch: {e}") if stop_processing: break q.put(None) except Exception as e: if not stop_processing: q.put(f"Worker encountered an error: {e}") def generate_captions_for_batch(batch, save_directory, q): for image_path in batch: generate_caption(image_path, save_directory, q) def update_progress(): try: completed = 0 while True: item = q.get() if item is None: break if isinstance(item, str): if "Error" in item: root.after(0, errors_var.set, f"Errors: {len(error_messages)}") continue completed += 1 progress.set(int((completed / len(selected_files)) * 100)) if not stop_processing: root.after(0, status_var.set, f"Processed {completed} files") root.after(0, root.update_idletasks) if not stop_processing: root.after(0, progress.set(100)) show_completion_message(completed) except Exception as e: if not stop_processing: root.after(0, status_var.set(f"Error: {e}")) finally: toggle_buttons(True) def show_completion_message(completed): message = f"Processing complete. {completed} files processed." if error_messages: message += f" {len(error_messages)} errors occurred." messagebox.showinfo("Process Complete", message) def process_files(): global stop_processing, error_messages stop_processing = False error_messages.clear() errors_var.set("Errors: 0") validate_selected_files() if not selected_files or not save_directory: status_var.set("Please select images.") return toggle_buttons(False) threading.Thread(target=worker, args=(save_directory, thread_count_var.get(), batch_size_var.get())).start() threading.Thread(target=update_progress).start() def stop_processing_func(): global stop_processing stop_processing = True torch.cuda.empty_cache() status_var.set("Processing stopped.") def open_caption_window(): global caption_window, caption_frame, caption_text_widgets, current_page, total_pages, content_canvas if caption_window is not None: return validate_selected_files() caption_window = tk.Toplevel(root) caption_window.title("Image Thumbnails and Captions") caption_window.geometry("940x900") main_frame = tk.Frame(caption_window) main_frame.pack(fill=tk.BOTH, expand=True) search_frame = tk.Frame(main_frame) search_frame.pack(side=tk.TOP, fill=tk.X) search_entry = tk.Entry(search_frame, textvariable=search_var) search_entry.pack(side=tk.LEFT, padx=10, pady=5, fill=tk.X, expand=True) search_button = tk.Button(search_frame, text="Search", command=search_captions) search_button.pack(side=tk.LEFT, padx=10) reset_button = tk.Button(search_frame, text="Reset Order", command=reset_order) reset_button.pack(side=tk.LEFT, padx=10) action_frame = tk.Frame(main_frame) action_frame.pack(side=tk.TOP, fill=tk.X) action_entry = tk.Entry(action_frame, textvariable=action_var) action_entry.pack(side=tk.LEFT, padx=10, pady=5, fill=tk.X, expand=True) prepend_button = tk.Button(action_frame, text="Add to Beginning", command=lambda: add_to_captions("prepend")) prepend_button.pack(side=tk.LEFT, padx=5) append_button = tk.Button(action_frame, text="Add to End", command=lambda: add_to_captions("append")) append_button.pack(side=tk.LEFT, padx=5) insert_middle_button = tk.Button(action_frame, text="Add to Middle", command=lambda: add_to_captions("insert_middle")) insert_middle_button.pack(side=tk.LEFT, padx=5) delete_keyword_button = tk.Button(action_frame, text="Delete Keyword", command=delete_keyword_from_captions) delete_keyword_button.pack(side=tk.LEFT, padx=5) delete_images_button = tk.Button(action_frame, text="Delete Images with Keyword", command=delete_images_with_keyword) delete_images_button.pack(side=tk.LEFT, padx=5) content_canvas = tk.Canvas(main_frame) content_canvas.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) caption_frame = tk.Frame(content_canvas) content_canvas.create_window((0, 0), window=caption_frame, anchor='nw') caption_scrollbar = tk.Scrollbar(main_frame, orient="vertical", command=content_canvas.yview) caption_scrollbar.pack(side=tk.LEFT, fill=tk.Y) content_canvas.configure(yscrollcommand=caption_scrollbar.set) caption_frame.bind("", lambda e: content_canvas.configure(scrollregion=content_canvas.bbox("all"))) content_canvas.bind_all("", lambda event: content_canvas.yview_scroll(int(-1*(event.delta/120)), "units")) # Định nghĩa hàm on_mouse_wheel def on_mouse_wheel(event): try: if content_canvas.winfo_exists(): content_canvas.yview_scroll(int(-1*(event.delta/120)), "units") except tk.TclError: pass content_canvas.bind_all("", on_mouse_wheel) def on_caption_window_close(): global caption_window caption_window.destroy() caption_window = None caption_window.protocol("WM_DELETE_WINDOW", on_caption_window_close) update_image_preview(content_canvas) def update_image_preview(content_canvas): global thumbnails, caption_text_widgets, current_page, images_per_page, total_pages if caption_frame is None: return for widget in caption_frame.winfo_children(): if isinstance(widget, tk.Label) or isinstance(widget, tk.Text) or isinstance(widget, tk.Frame): widget.destroy() thumbnails.clear() caption_text_widgets.clear() if not selected_files: return start_index = current_page * images_per_page end_index = start_index + images_per_page files_to_display = selected_files[start_index:end_index] for i, file_path in enumerate(files_to_display): thumbnail_size = (200, 200) try: image = PILImage.open(file_path) image.thumbnail(thumbnail_size) thumbnail = ImageTk.PhotoImage(image) thumbnails.append(thumbnail) img_label = tk.Label(caption_frame, image=thumbnail) img_label.grid(row=i*2, column=0, padx=5, pady=5, sticky="nsew") file_label = tk.Label(caption_frame, text=os.path.basename(file_path), font=('Helvetica', 12), wraplength=300, justify="left") file_label.grid(row=i*2, column=1, padx=5, pady=5, sticky="nsew") filename = os.path.splitext(os.path.basename(file_path))[0] caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption if os.path.exists(caption_file): with open(caption_file, 'r', encoding='utf-8') as file: caption_text = file.read() else: caption_text = "" caption_var = tk.StringVar(value=caption_text) caption_text_widget = tk.Text(caption_frame, width=50, height=3, wrap=tk.WORD, font=('Helvetica', 12)) caption_text_widget.insert(tk.END, caption_text) caption_text_widget.grid(row=i*2, column=2, padx=5, pady=5, sticky="nsew") caption_var.trace_add("write", lambda *args, fp=file_path, cv=caption_var: save_caption(fp, cv.get())) caption_text_widget.bind("", lambda e, cv=caption_var, w=caption_text_widget: cv.set(w.get("1.0", "end-1c"))) caption_text_widgets.append(caption_text_widget) except Exception as e: tk.Label(caption_frame, text="Error loading image").grid(row=i*2, column=0, columnspan=4, padx=5, pady=5) nav_frame = tk.Frame(caption_frame) nav_frame.grid(row=images_per_page*2, column=0, columnspan=3, pady=10) if current_page > 0: prev_button = tk.Button(nav_frame, text="Previous", command=lambda: navigate(-1, content_canvas)) prev_button.pack(side=tk.LEFT) page_label = tk.Label(nav_frame, text=f"Page {current_page + 1} of {total_pages}") page_label.pack(side=tk.LEFT, padx=5) page_entry = tk.Entry(nav_frame, width=5) page_entry.pack(side=tk.LEFT) go_button = tk.Button(nav_frame, text="Go", command=lambda: go_to_page(page_entry.get(), content_canvas)) go_button.pack(side=tk.LEFT, padx=5) if current_page < total_pages - 1: next_button = tk.Button(nav_frame, text="Next", command=lambda: navigate(1, content_canvas)) next_button.pack(side=tk.RIGHT) def navigate(direction, content_canvas): global current_page current_page += direction update_image_preview(content_canvas) def go_to_page(page_number, content_canvas): global current_page, total_pages try: page_number = int(page_number) if 1 <= page_number <= total_pages: current_page = page_number - 1 update_image_preview(content_canvas) else: messagebox.showerror("Invalid Page", f"Please enter a valid page number between 1 and {total_pages}.") except ValueError: messagebox.showerror("Invalid Input", "Please enter a valid integer for the page number.") def save_caption(file_path, caption_text): filename = os.path.splitext(os.path.basename(file_path))[0] output_path = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption try: with open(output_path, 'w', encoding='utf-8') as file: file.write(caption_text.strip()) except Exception as e: print(f"Error saving captions: {e}") def search_captions(): global selected_files search_term = search_var.get().lower().strip() if not search_term: return try: selected_files.sort(key=lambda x: search_score(x, search_term), reverse=True) except Exception as e: error_message = f"Error during sorting: {e}" print(error_message) error_messages.append(error_message) update_image_preview(content_canvas) def search_score(file_path, search_term): filename = os.path.splitext(os.path.basename(file_path))[0] caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption try: if os.path.exists(caption_file): with open(caption_file, 'r', encoding='utf-8') as file: caption_text = file.read().lower() if search_term in caption_text: return caption_text.count(search_term) except Exception as e: error_message = f"Error reading file {caption_file}: {e}" print(error_message) error_messages.append(error_message) return 0 def reset_order(): global selected_files selected_files = original_selected_files.copy() update_image_preview(content_canvas) def add_to_captions(position): global selected_files keyword = action_var.get() if not keyword: return for file_path in selected_files: filename = os.path.splitext(os.path.basename(file_path))[0] caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption if os.path.exists(caption_file): with open(caption_file, 'r+', encoding='utf-8') as file: caption_text = file.read() if position == "prepend": caption_text = f"{keyword} {caption_text}" elif position == "append": caption_text = f"{caption_text} {keyword}" elif position == "insert_middle": middle_index = len(caption_text) // 2 caption_text = f"{caption_text[:middle_index]} {keyword} {caption_text[middle_index:]}" file.seek(0) file.write(caption_text) file.truncate() update_image_preview(content_canvas) def delete_keyword_from_captions(): keyword = action_var.get().lower().strip() if not keyword: return for file_path in selected_files: filename = os.path.splitext(os.path.basename(file_path))[0] caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption if os.path.exists(caption_file): with open(caption_file, 'r+', encoding='utf-8') as file: caption_text = file.read().lower().replace(keyword, "") updated_caption = caption_text.replace(keyword, "").strip() file.seek(0) file.write(updated_caption) file.truncate() update_image_preview(content_canvas) def delete_images_with_keyword(): global selected_files keyword = action_var.get().lower() if not keyword: return files_to_delete = [] for file_path in selected_files: filename = os.path.splitext(os.path.basename(file_path))[0] caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption if os.path.exists(caption_file): with open(caption_file, 'r', encoding='utf-8') as file: caption_text = file.read().lower() if keyword in caption_text: files_to_delete.append(file_path) for file_path in files_to_delete: try: os.remove(file_path) filename = os.path.splitext(os.path.basename(file_path))[0] caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption if os.path.exists(caption_file): os.remove(caption_file) except Exception as e: error_message = f"Error deleting file {file_path} or its caption: {e}" print(error_message) error_messages.append(error_message) selected_files = [file_path for file_path in selected_files if file_path not in files_to_delete] validate_selected_files() update_image_preview(content_canvas) def return_to_menu(): stop_processing_func() root.destroy() import main main.open_main_menu() def on_closing(): return_to_menu() if __name__ == "__main__": open_image_to_caption()