PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-lunarlandr-v2.zip +3 -0
- ppo-lunarlandr-v2/_stable_baselines3_version +1 -0
- ppo-lunarlandr-v2/data +94 -0
- ppo-lunarlandr-v2/policy.optimizer.pth +3 -0
- ppo-lunarlandr-v2/policy.pth +3 -0
- ppo-lunarlandr-v2/pytorch_variables.pth +3 -0
- ppo-lunarlandr-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 215.33 +/- 43.14
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff47ae01680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff47ae01710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff47ae017a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff47ae01830>", "_build": "<function ActorCriticPolicy._build at 0x7ff47ae018c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff47ae01950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff47ae019e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff47ae01a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff47ae01b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff47ae01b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff47ae01c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff47ae5a150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651709430.187187, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKrGgz4K+aI+Ys5wvrqxXL48RfW8cgsPvgAAAAAAAAAAen+Svh3QRr3uAoq8TO0Wu9GbrT69wNg7AACAPwAAgD/Nuyg+nIYJvAsVwztfZY65vS5pvRjQ6roAAIA/AACAP7Bnxr52KHa8kME9OoReHjg/9p49zYleuQAAgD8AAIA/AIJQPVwrVrrVurS7H9bCN0Nufrkf2A23AACAPwAAgD/VPI6+ITkDPxQgND3nr5e+FvD+vJ2k/LsAAAAAAAAAADMTjLrhBIO6p5qwOvxckzWEFEe7EhDOuQAAgD8AAIA/GrL9PdzKKD4iFFg8HGAEvuavdz0b6Ti8AAAAAAAAAABAq4Q9e4KfurdzFDrv41G2QczROvt+KrkAAIA/AACAP8C3UT7c710+HiHTvXRXdb6Qg3C83YlcvQAAAAAAAAAA/btVvjSesrxe/om8gFbeui/hHD66S647AACAPwAAgD+zGSc9pj69P8Dt3z2Hl1K+8q9WPWTNpbwAAAAAAAAAAM3PQD7uZqo9A7kLvmVNpr1rmgW9QjX4vAAAAAAAAAAAM7NhvOHKgLpKz2y7aeHDOB8iKjvbCv05AACAPwAAgD8ql4Y+LHWfPLLUmjml3w848nUxPslGwLgAAIA/AACAP3q1V772jTa8L0I7uNwfHbZbK6M9bXdfNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0T/BxYq7YUCUhpRSlIwBbJRN6AOMAXSUR0CK9g+QEIPcdX2UKGgGaAloD0MIPzvgumIHWkCUhpRSlGgVTegDaBZHQIsM4DaGpMp1fZQoaAZoCWgPQwg3/686crBdQJSGlFKUaBVN6ANoFkdAixZxsl9jPXV9lChoBmgJaA9DCC8X8Z2YG19AlIaUUpRoFU3oA2gWR0CLGTO8kD6ndX2UKGgGaAloD0MI9dVVgdrcYkCUhpRSlGgVTegDaBZHQIsaCveP7vZ1fZQoaAZoCWgPQwjJHTaRmXtZQJSGlFKUaBVN6ANoFkdAiyEfXPJJXnV9lChoBmgJaA9DCIUIOISqzWFAlIaUUpRoFU3oA2gWR0CLKFA1vVEvdX2UKGgGaAloD0MItYtppvvxY0CUhpRSlGgVTegDaBZHQIs3dFYuCf91fZQoaAZoCWgPQwixpx3+mntiQJSGlFKUaBVN6ANoFkdAi0Y1UuL743V9lChoBmgJaA9DCOSh725lcF9AlIaUUpRoFU3oA2gWR0CLVjxMnJDFdX2UKGgGaAloD0MIoUj3cwpWWkCUhpRSlGgVTegDaBZHQItWrgbZOBV1fZQoaAZoCWgPQwjqspjY/FNjQJSGlFKUaBVN6ANoFkdAi1cgKF7D23V9lChoBmgJaA9DCPEsQUZAFl5AlIaUUpRoFU3oA2gWR0CLWg/iYLLIdX2UKGgGaAloD0MIFmwjnuy2YUCUhpRSlGgVTegDaBZHQItkMlgMMJB1fZQoaAZoCWgPQwiB7PXujwRgQJSGlFKUaBVN6ANoFkdAi22bj1f3OHV9lChoBmgJaA9DCM+8HHbfh2JAlIaUUpRoFU3oA2gWR0CLhPT2nKnvdX2UKGgGaAloD0MIsHWpEfqlNUCUhpRSlGgVS/1oFkdAi4mSOR1YAHV9lChoBmgJaA9DCO1FtB1TlF9AlIaUUpRoFU3oA2gWR0CLkJgLqlgudX2UKGgGaAloD0MINQcI5uhtXECUhpRSlGgVTegDaBZHQIulZ7gKnel1fZQoaAZoCWgPQwi3mnXG9xRfQJSGlFKUaBVN6ANoFkdAi656i9IwunV9lChoBmgJaA9DCC0/cJWnSGVAlIaUUpRoFU3oA2gWR0CLsPq20AtGdX2UKGgGaAloD0MI7BUW3A9ZYkCUhpRSlGgVTegDaBZHQIuxwUnG8291fZQoaAZoCWgPQwgiqYWSyR5gQJSGlFKUaBVN6ANoFkdAi7jYcvM8o3V9lChoBmgJaA9DCBgK2A5GSltAlIaUUpRoFU3oA2gWR0CM13oC+10DdX2UKGgGaAloD0MIaqUQyCXgQECUhpRSlGgVTQABaBZHQIzkMCkoF3Z1fZQoaAZoCWgPQwgpP6n26V1iQJSGlFKUaBVN6ANoFkdAjOddAgPmP3V9lChoBmgJaA9DCLka2ZWWaG5AlIaUUpRoFU2vAmgWR0CM8Bftx+8XdX2UKGgGaAloD0MIG0esxae8N0CUhpRSlGgVS+JoFkdAjPNHWz4UOHV9lChoBmgJaA9DCDLIXYSpDWRAlIaUUpRoFU3oA2gWR0CM9vjI7vG7dX2UKGgGaAloD0MIaFpiZTTOXUCUhpRSlGgVTegDaBZHQI0G8Q04zad1fZQoaAZoCWgPQwjVtItpJiJhQJSGlFKUaBVN6ANoFkdAjQdnPE87p3V9lChoBmgJaA9DCCLGa17VoWNAlIaUUpRoFU3oA2gWR0CNB91ie/YbdX2UKGgGaAloD0MIRbde04P4XUCUhpRSlGgVTegDaBZHQI0KgS13MZB1fZQoaAZoCWgPQwjz/6ojx7JmwJSGlFKUaBVNHAFoFkdAjRyb0OEuhHV9lChoBmgJaA9DCNY5BmQvsm9AlIaUUpRoFU1dAmgWR0CNImVkc0cfdX2UKGgGaAloD0MIIZT3cTTnBkCUhpRSlGgVS/5oFkdAjSnGiQDFInV9lChoBmgJaA9DCDdwB+qUoGJAlIaUUpRoFU3oA2gWR0CNM6qI7/4qdX2UKGgGaAloD0MICvMeZ5oKbUCUhpRSlGgVTUQBaBZHQI03gAZKnNx1fZQoaAZoCWgPQwhPV3csNs9hQJSGlFKUaBVN6ANoFkdAjTfSB9TgmHV9lChoBmgJaA9DCAbzV8jcEWBAlIaUUpRoFU3oA2gWR0CNPaS5AhStdX2UKGgGaAloD0MIgSGrW72JYUCUhpRSlGgVTegDaBZHQI1Xi0F8ohJ1fZQoaAZoCWgPQwhStd0E305gQJSGlFKUaBVN6ANoFkdAjVqks8PnS3V9lChoBmgJaA9DCFGk+zkFZ2VAlIaUUpRoFU3oA2gWR0CNaQHEdeY2dX2UKGgGaAloD0MIV5i+1xAdX0CUhpRSlGgVTegDaBZHQI11rKDCgsd1fZQoaAZoCWgPQwhyUS0iCn1gQJSGlFKUaBVN6ANoFkdAjXjJMxoIwHV9lChoBmgJaA9DCIXP1sHBImRAlIaUUpRoFU3oA2gWR0CNgRbh3qzJdX2UKGgGaAloD0MINq/qrBYNYECUhpRSlGgVTegDaBZHQI2Hqw+t8u11fZQoaAZoCWgPQwgva2KBrzJfQJSGlFKUaBVN6ANoFkdAjZdyuhbno3V9lChoBmgJaA9DCEiHhzB++FtAlIaUUpRoFU3oA2gWR0CNl/ghr30xdX2UKGgGaAloD0MI7SjOUUdlRECUhpRSlGgVS/RoFkdAja0JIMBp6HV9lChoBmgJaA9DCIGzlCynGGNAlIaUUpRoFU3oA2gWR0CNr8YwZflZdX2UKGgGaAloD0MIBW1y+KS1YECUhpRSlGgVTegDaBZHQI22DzVc2R91fZQoaAZoCWgPQwhA9+XM9rNkQJSGlFKUaBVN6ANoFkdAjb4mG21D0HV9lChoBmgJaA9DCHSZmgRvwWJAlIaUUpRoFU3oA2gWR0CNyFBF/hESdX2UKGgGaAloD0MIgczOovc3YECUhpRSlGgVTegDaBZHQI3MJVfeDWd1fZQoaAZoCWgPQwgbguMybudhQJSGlFKUaBVN6ANoFkdAjcxwpWmxdXV9lChoBmgJaA9DCM+6RsuBrGFAlIaUUpRoFU3oA2gWR0CN0iqiGnGbdX2UKGgGaAloD0MI8Il1qny9V0CUhpRSlGgVTegDaBZHQI3sY2qDK5l1fZQoaAZoCWgPQwifPCzUmh1cQJSGlFKUaBVN6ANoFkdAje+ouPFNtnV9lChoBmgJaA9DCKLQsu4fml9AlIaUUpRoFU3oA2gWR0CN/gSt/4IsdX2UKGgGaAloD0MI1jkGZC8wYkCUhpRSlGgVTegDaBZHQI8h/7m+0w91fZQoaAZoCWgPQwj1ona/Cp9lQJSGlFKUaBVN6ANoFkdAjyTRKQJXyXV9lChoBmgJaA9DCMK9Mm/V1WFAlIaUUpRoFU3oA2gWR0CPLExwAEMcdX2UKGgGaAloD0MILSeh9AXYb0CUhpRSlGgVTdsDaBZHQI8+t5jYqXp1fZQoaAZoCWgPQwjqswOuq+ViQJSGlFKUaBVN6ANoFkdAj0D2Cdz4lHV9lChoBmgJaA9DCC20c5qFBmNAlIaUUpRoFU3oA2gWR0CPVF0gbIcSdX2UKGgGaAloD0MIGY9SCc+jYkCUhpRSlGgVTegDaBZHQI9WyzHCGet1fZQoaAZoCWgPQwj+0w0UeEVjQJSGlFKUaBVN6ANoFkdAj1xIQ4CIUXV9lChoBmgJaA9DCL7Ye/HFZ2VAlIaUUpRoFU3oA2gWR0CPYyXUH6dldX2UKGgGaAloD0MIpoC0/wGqWkCUhpRSlGgVTegDaBZHQI9sHmV7hNx1fZQoaAZoCWgPQwhZ2xSPC/1hQJSGlFKUaBVN6ANoFkdAj2+FaB7NS3V9lChoBmgJaA9DCJUsJ6H00VlAlIaUUpRoFU3oA2gWR0CPb8v+wTufdX2UKGgGaAloD0MIYCLeOv81akCUhpRSlGgVTXEBaBZHQI9wq0dBBzF1fZQoaAZoCWgPQwitS43QT3phQJSGlFKUaBVN6ANoFkdAj3SrvkRzzXV9lChoBmgJaA9DCBPSGoNOjkHAlIaUUpRoFUvQaBZHQI92TlJYkmh1fZQoaAZoCWgPQwjHEWvxKYRIQJSGlFKUaBVL4GgWR0CPjAb5uZTidX2UKGgGaAloD0MIOPWB5J0DZECUhpRSlGgVTegDaBZHQI+MpdIGyHF1fZQoaAZoCWgPQwiDa+7o/99hQJSGlFKUaBVN6ANoFkdAj4+cQ7LdN3V9lChoBmgJaA9DCAaf5uRF1l1AlIaUUpRoFU3oA2gWR0CPneexOclPdX2UKGgGaAloD0MIptO6DWoOcECUhpRSlGgVTYwBaBZHQI+lZzzVc2R1fZQoaAZoCWgPQwh6AIv8+gZeQJSGlFKUaBVN6ANoFkdAj6qwfIS13XV9lChoBmgJaA9DCFoPXyaKLlxAlIaUUpRoFU3oA2gWR0CPrW06YE4edX2UKGgGaAloD0MIJEIj2LgIXkCUhpRSlGgVTegDaBZHQI+0lhmXgLt1fZQoaAZoCWgPQwg1JVmHoxsZwJSGlFKUaBVLzWgWR0CPuqCzTnaGdX2UKGgGaAloD0MIQ5JZvcNlXkCUhpRSlGgVTegDaBZHQI/Im1IAfdR1fZQoaAZoCWgPQwj0F3rE6AxgQJSGlFKUaBVN6ANoFkdAj9w/6GgzxnV9lChoBmgJaA9DCNNsHofB12BAlIaUUpRoFU3oA2gWR0CP3qBYFJQMdX2UKGgGaAloD0MIs7YpHpcjZECUhpRSlGgVTegDaBZHQI/rij8DSw51fZQoaAZoCWgPQwiN7bWg9/xbQJSGlFKUaBVN6ANoFkdAj/Sax5cC5nV9lChoBmgJaA9DCHbB4Jo7evo/lIaUUpRoFUvTaBZHQI/4weaKDTV1fZQoaAZoCWgPQwhTrvAuF+FbQJSGlFKUaBVN6ANoFkdAj/lzhHbypnV9lChoBmgJaA9DCHeGqS11rF1AlIaUUpRoFU3oA2gWR0CP/aSK3uuzdX2UKGgGaAloD0MIi4nNx7U7ZUCUhpRSlGgVTegDaBZHQI//OG47Rv51fZQoaAZoCWgPQwhwe4LEdpM5QJSGlFKUaBVLzmgWR0CQAnp7TlT4dX2UKGgGaAloD0MI7gbRWlGSbUCUhpRSlGgVTTMCaBZHQJAJBu/Dcdp1fZQoaAZoCWgPQwgr+kMzT8NnQJSGlFKUaBVN6ANoFkdAkAl2rCFbmnV9lChoBmgJaA9DCBpNLsbAPF5AlIaUUpRoFU3oA2gWR0CQCbpwjt5VdX2UKGgGaAloD0MIgv5Cj5hIYkCUhpRSlGgVTegDaBZHQJAK7EBKcut1fZQoaAZoCWgPQwi/RSdLrTlHQJSGlFKUaBVL/mgWR0CQDYI55qubdX2UKGgGaAloD0MIhslUwShaY0CUhpRSlGgVTegDaBZHQJATKB5HEuR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-lunarlandr-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a64ed95992d2454ccf86ce219c12d20721ab1bcb1dc641d17382d9c9f14d7017
|
3 |
+
size 144097
|
ppo-lunarlandr-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-lunarlandr-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff47ae01680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff47ae01710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff47ae017a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff47ae01830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff47ae018c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff47ae01950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff47ae019e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff47ae01a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff47ae01b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff47ae01b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff47ae01c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff47ae5a150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651709430.187187,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKrGgz4K+aI+Ys5wvrqxXL48RfW8cgsPvgAAAAAAAAAAen+Svh3QRr3uAoq8TO0Wu9GbrT69wNg7AACAPwAAgD/Nuyg+nIYJvAsVwztfZY65vS5pvRjQ6roAAIA/AACAP7Bnxr52KHa8kME9OoReHjg/9p49zYleuQAAgD8AAIA/AIJQPVwrVrrVurS7H9bCN0Nufrkf2A23AACAPwAAgD/VPI6+ITkDPxQgND3nr5e+FvD+vJ2k/LsAAAAAAAAAADMTjLrhBIO6p5qwOvxckzWEFEe7EhDOuQAAgD8AAIA/GrL9PdzKKD4iFFg8HGAEvuavdz0b6Ti8AAAAAAAAAABAq4Q9e4KfurdzFDrv41G2QczROvt+KrkAAIA/AACAP8C3UT7c710+HiHTvXRXdb6Qg3C83YlcvQAAAAAAAAAA/btVvjSesrxe/om8gFbeui/hHD66S647AACAPwAAgD+zGSc9pj69P8Dt3z2Hl1K+8q9WPWTNpbwAAAAAAAAAAM3PQD7uZqo9A7kLvmVNpr1rmgW9QjX4vAAAAAAAAAAAM7NhvOHKgLpKz2y7aeHDOB8iKjvbCv05AACAPwAAgD8ql4Y+LHWfPLLUmjml3w848nUxPslGwLgAAIA/AACAP3q1V772jTa8L0I7uNwfHbZbK6M9bXdfNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0T/BxYq7YUCUhpRSlIwBbJRN6AOMAXSUR0CK9g+QEIPcdX2UKGgGaAloD0MIPzvgumIHWkCUhpRSlGgVTegDaBZHQIsM4DaGpMp1fZQoaAZoCWgPQwg3/686crBdQJSGlFKUaBVN6ANoFkdAixZxsl9jPXV9lChoBmgJaA9DCC8X8Z2YG19AlIaUUpRoFU3oA2gWR0CLGTO8kD6ndX2UKGgGaAloD0MI9dVVgdrcYkCUhpRSlGgVTegDaBZHQIsaCveP7vZ1fZQoaAZoCWgPQwjJHTaRmXtZQJSGlFKUaBVN6ANoFkdAiyEfXPJJXnV9lChoBmgJaA9DCIUIOISqzWFAlIaUUpRoFU3oA2gWR0CLKFA1vVEvdX2UKGgGaAloD0MItYtppvvxY0CUhpRSlGgVTegDaBZHQIs3dFYuCf91fZQoaAZoCWgPQwixpx3+mntiQJSGlFKUaBVN6ANoFkdAi0Y1UuL743V9lChoBmgJaA9DCOSh725lcF9AlIaUUpRoFU3oA2gWR0CLVjxMnJDFdX2UKGgGaAloD0MIoUj3cwpWWkCUhpRSlGgVTegDaBZHQItWrgbZOBV1fZQoaAZoCWgPQwjqspjY/FNjQJSGlFKUaBVN6ANoFkdAi1cgKF7D23V9lChoBmgJaA9DCPEsQUZAFl5AlIaUUpRoFU3oA2gWR0CLWg/iYLLIdX2UKGgGaAloD0MIFmwjnuy2YUCUhpRSlGgVTegDaBZHQItkMlgMMJB1fZQoaAZoCWgPQwiB7PXujwRgQJSGlFKUaBVN6ANoFkdAi22bj1f3OHV9lChoBmgJaA9DCM+8HHbfh2JAlIaUUpRoFU3oA2gWR0CLhPT2nKnvdX2UKGgGaAloD0MIsHWpEfqlNUCUhpRSlGgVS/1oFkdAi4mSOR1YAHV9lChoBmgJaA9DCO1FtB1TlF9AlIaUUpRoFU3oA2gWR0CLkJgLqlgudX2UKGgGaAloD0MINQcI5uhtXECUhpRSlGgVTegDaBZHQIulZ7gKnel1fZQoaAZoCWgPQwi3mnXG9xRfQJSGlFKUaBVN6ANoFkdAi656i9IwunV9lChoBmgJaA9DCC0/cJWnSGVAlIaUUpRoFU3oA2gWR0CLsPq20AtGdX2UKGgGaAloD0MI7BUW3A9ZYkCUhpRSlGgVTegDaBZHQIuxwUnG8291fZQoaAZoCWgPQwgiqYWSyR5gQJSGlFKUaBVN6ANoFkdAi7jYcvM8o3V9lChoBmgJaA9DCBgK2A5GSltAlIaUUpRoFU3oA2gWR0CM13oC+10DdX2UKGgGaAloD0MIaqUQyCXgQECUhpRSlGgVTQABaBZHQIzkMCkoF3Z1fZQoaAZoCWgPQwgpP6n26V1iQJSGlFKUaBVN6ANoFkdAjOddAgPmP3V9lChoBmgJaA9DCLka2ZWWaG5AlIaUUpRoFU2vAmgWR0CM8Bftx+8XdX2UKGgGaAloD0MIG0esxae8N0CUhpRSlGgVS+JoFkdAjPNHWz4UOHV9lChoBmgJaA9DCDLIXYSpDWRAlIaUUpRoFU3oA2gWR0CM9vjI7vG7dX2UKGgGaAloD0MIaFpiZTTOXUCUhpRSlGgVTegDaBZHQI0G8Q04zad1fZQoaAZoCWgPQwjVtItpJiJhQJSGlFKUaBVN6ANoFkdAjQdnPE87p3V9lChoBmgJaA9DCCLGa17VoWNAlIaUUpRoFU3oA2gWR0CNB91ie/YbdX2UKGgGaAloD0MIRbde04P4XUCUhpRSlGgVTegDaBZHQI0KgS13MZB1fZQoaAZoCWgPQwjz/6ojx7JmwJSGlFKUaBVNHAFoFkdAjRyb0OEuhHV9lChoBmgJaA9DCNY5BmQvsm9AlIaUUpRoFU1dAmgWR0CNImVkc0cfdX2UKGgGaAloD0MIIZT3cTTnBkCUhpRSlGgVS/5oFkdAjSnGiQDFInV9lChoBmgJaA9DCDdwB+qUoGJAlIaUUpRoFU3oA2gWR0CNM6qI7/4qdX2UKGgGaAloD0MICvMeZ5oKbUCUhpRSlGgVTUQBaBZHQI03gAZKnNx1fZQoaAZoCWgPQwhPV3csNs9hQJSGlFKUaBVN6ANoFkdAjTfSB9TgmHV9lChoBmgJaA9DCAbzV8jcEWBAlIaUUpRoFU3oA2gWR0CNPaS5AhStdX2UKGgGaAloD0MIgSGrW72JYUCUhpRSlGgVTegDaBZHQI1Xi0F8ohJ1fZQoaAZoCWgPQwhStd0E305gQJSGlFKUaBVN6ANoFkdAjVqks8PnS3V9lChoBmgJaA9DCFGk+zkFZ2VAlIaUUpRoFU3oA2gWR0CNaQHEdeY2dX2UKGgGaAloD0MIV5i+1xAdX0CUhpRSlGgVTegDaBZHQI11rKDCgsd1fZQoaAZoCWgPQwhyUS0iCn1gQJSGlFKUaBVN6ANoFkdAjXjJMxoIwHV9lChoBmgJaA9DCIXP1sHBImRAlIaUUpRoFU3oA2gWR0CNgRbh3qzJdX2UKGgGaAloD0MINq/qrBYNYECUhpRSlGgVTegDaBZHQI2Hqw+t8u11fZQoaAZoCWgPQwgva2KBrzJfQJSGlFKUaBVN6ANoFkdAjZdyuhbno3V9lChoBmgJaA9DCEiHhzB++FtAlIaUUpRoFU3oA2gWR0CNl/ghr30xdX2UKGgGaAloD0MI7SjOUUdlRECUhpRSlGgVS/RoFkdAja0JIMBp6HV9lChoBmgJaA9DCIGzlCynGGNAlIaUUpRoFU3oA2gWR0CNr8YwZflZdX2UKGgGaAloD0MIBW1y+KS1YECUhpRSlGgVTegDaBZHQI22DzVc2R91fZQoaAZoCWgPQwhA9+XM9rNkQJSGlFKUaBVN6ANoFkdAjb4mG21D0HV9lChoBmgJaA9DCHSZmgRvwWJAlIaUUpRoFU3oA2gWR0CNyFBF/hESdX2UKGgGaAloD0MIgczOovc3YECUhpRSlGgVTegDaBZHQI3MJVfeDWd1fZQoaAZoCWgPQwgbguMybudhQJSGlFKUaBVN6ANoFkdAjcxwpWmxdXV9lChoBmgJaA9DCM+6RsuBrGFAlIaUUpRoFU3oA2gWR0CN0iqiGnGbdX2UKGgGaAloD0MI8Il1qny9V0CUhpRSlGgVTegDaBZHQI3sY2qDK5l1fZQoaAZoCWgPQwifPCzUmh1cQJSGlFKUaBVN6ANoFkdAje+ouPFNtnV9lChoBmgJaA9DCKLQsu4fml9AlIaUUpRoFU3oA2gWR0CN/gSt/4IsdX2UKGgGaAloD0MI1jkGZC8wYkCUhpRSlGgVTegDaBZHQI8h/7m+0w91fZQoaAZoCWgPQwj1ona/Cp9lQJSGlFKUaBVN6ANoFkdAjyTRKQJXyXV9lChoBmgJaA9DCMK9Mm/V1WFAlIaUUpRoFU3oA2gWR0CPLExwAEMcdX2UKGgGaAloD0MILSeh9AXYb0CUhpRSlGgVTdsDaBZHQI8+t5jYqXp1fZQoaAZoCWgPQwjqswOuq+ViQJSGlFKUaBVN6ANoFkdAj0D2Cdz4lHV9lChoBmgJaA9DCC20c5qFBmNAlIaUUpRoFU3oA2gWR0CPVF0gbIcSdX2UKGgGaAloD0MIGY9SCc+jYkCUhpRSlGgVTegDaBZHQI9WyzHCGet1fZQoaAZoCWgPQwj+0w0UeEVjQJSGlFKUaBVN6ANoFkdAj1xIQ4CIUXV9lChoBmgJaA9DCL7Ye/HFZ2VAlIaUUpRoFU3oA2gWR0CPYyXUH6dldX2UKGgGaAloD0MIpoC0/wGqWkCUhpRSlGgVTegDaBZHQI9sHmV7hNx1fZQoaAZoCWgPQwhZ2xSPC/1hQJSGlFKUaBVN6ANoFkdAj2+FaB7NS3V9lChoBmgJaA9DCJUsJ6H00VlAlIaUUpRoFU3oA2gWR0CPb8v+wTufdX2UKGgGaAloD0MIYCLeOv81akCUhpRSlGgVTXEBaBZHQI9wq0dBBzF1fZQoaAZoCWgPQwitS43QT3phQJSGlFKUaBVN6ANoFkdAj3SrvkRzzXV9lChoBmgJaA9DCBPSGoNOjkHAlIaUUpRoFUvQaBZHQI92TlJYkmh1fZQoaAZoCWgPQwjHEWvxKYRIQJSGlFKUaBVL4GgWR0CPjAb5uZTidX2UKGgGaAloD0MIOPWB5J0DZECUhpRSlGgVTegDaBZHQI+MpdIGyHF1fZQoaAZoCWgPQwiDa+7o/99hQJSGlFKUaBVN6ANoFkdAj4+cQ7LdN3V9lChoBmgJaA9DCAaf5uRF1l1AlIaUUpRoFU3oA2gWR0CPneexOclPdX2UKGgGaAloD0MIptO6DWoOcECUhpRSlGgVTYwBaBZHQI+lZzzVc2R1fZQoaAZoCWgPQwh6AIv8+gZeQJSGlFKUaBVN6ANoFkdAj6qwfIS13XV9lChoBmgJaA9DCFoPXyaKLlxAlIaUUpRoFU3oA2gWR0CPrW06YE4edX2UKGgGaAloD0MIJEIj2LgIXkCUhpRSlGgVTegDaBZHQI+0lhmXgLt1fZQoaAZoCWgPQwg1JVmHoxsZwJSGlFKUaBVLzWgWR0CPuqCzTnaGdX2UKGgGaAloD0MIQ5JZvcNlXkCUhpRSlGgVTegDaBZHQI/Im1IAfdR1fZQoaAZoCWgPQwj0F3rE6AxgQJSGlFKUaBVN6ANoFkdAj9w/6GgzxnV9lChoBmgJaA9DCNNsHofB12BAlIaUUpRoFU3oA2gWR0CP3qBYFJQMdX2UKGgGaAloD0MIs7YpHpcjZECUhpRSlGgVTegDaBZHQI/rij8DSw51fZQoaAZoCWgPQwiN7bWg9/xbQJSGlFKUaBVN6ANoFkdAj/Sax5cC5nV9lChoBmgJaA9DCHbB4Jo7evo/lIaUUpRoFUvTaBZHQI/4weaKDTV1fZQoaAZoCWgPQwhTrvAuF+FbQJSGlFKUaBVN6ANoFkdAj/lzhHbypnV9lChoBmgJaA9DCHeGqS11rF1AlIaUUpRoFU3oA2gWR0CP/aSK3uuzdX2UKGgGaAloD0MIi4nNx7U7ZUCUhpRSlGgVTegDaBZHQI//OG47Rv51fZQoaAZoCWgPQwhwe4LEdpM5QJSGlFKUaBVLzmgWR0CQAnp7TlT4dX2UKGgGaAloD0MI7gbRWlGSbUCUhpRSlGgVTTMCaBZHQJAJBu/Dcdp1fZQoaAZoCWgPQwgr+kMzT8NnQJSGlFKUaBVN6ANoFkdAkAl2rCFbmnV9lChoBmgJaA9DCBpNLsbAPF5AlIaUUpRoFU3oA2gWR0CQCbpwjt5VdX2UKGgGaAloD0MIgv5Cj5hIYkCUhpRSlGgVTegDaBZHQJAK7EBKcut1fZQoaAZoCWgPQwi/RSdLrTlHQJSGlFKUaBVL/mgWR0CQDYI55qubdX2UKGgGaAloD0MIhslUwShaY0CUhpRSlGgVTegDaBZHQJATKB5HEuR1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-lunarlandr-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3da6b8c52957c1a0b6446a0b8cdbcd482002678f7ce2303e6f0ed5279013f7c
|
3 |
+
size 84893
|
ppo-lunarlandr-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:264608db4b71449d6ea75d4663b15999b9c631210e5036f52bd706a4547cb007
|
3 |
+
size 43201
|
ppo-lunarlandr-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunarlandr-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6321db3570ab6ebc1d327e080d155ac2665f729ba9d01241d873f724099c7b
|
3 |
+
size 255040
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 215.32784891850443, "std_reward": 43.14248130650234, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T00:40:44.611397"}
|