Dugerij commited on
Commit
177169d
1 Parent(s): d0e277d

PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 215.33 +/- 43.14
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff47ae01680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff47ae01710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff47ae017a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff47ae01830>", "_build": "<function ActorCriticPolicy._build at 0x7ff47ae018c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff47ae01950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff47ae019e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff47ae01a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff47ae01b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff47ae01b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff47ae01c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff47ae5a150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651709430.187187, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKrGgz4K+aI+Ys5wvrqxXL48RfW8cgsPvgAAAAAAAAAAen+Svh3QRr3uAoq8TO0Wu9GbrT69wNg7AACAPwAAgD/Nuyg+nIYJvAsVwztfZY65vS5pvRjQ6roAAIA/AACAP7Bnxr52KHa8kME9OoReHjg/9p49zYleuQAAgD8AAIA/AIJQPVwrVrrVurS7H9bCN0Nufrkf2A23AACAPwAAgD/VPI6+ITkDPxQgND3nr5e+FvD+vJ2k/LsAAAAAAAAAADMTjLrhBIO6p5qwOvxckzWEFEe7EhDOuQAAgD8AAIA/GrL9PdzKKD4iFFg8HGAEvuavdz0b6Ti8AAAAAAAAAABAq4Q9e4KfurdzFDrv41G2QczROvt+KrkAAIA/AACAP8C3UT7c710+HiHTvXRXdb6Qg3C83YlcvQAAAAAAAAAA/btVvjSesrxe/om8gFbeui/hHD66S647AACAPwAAgD+zGSc9pj69P8Dt3z2Hl1K+8q9WPWTNpbwAAAAAAAAAAM3PQD7uZqo9A7kLvmVNpr1rmgW9QjX4vAAAAAAAAAAAM7NhvOHKgLpKz2y7aeHDOB8iKjvbCv05AACAPwAAgD8ql4Y+LHWfPLLUmjml3w848nUxPslGwLgAAIA/AACAP3q1V772jTa8L0I7uNwfHbZbK6M9bXdfNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0T/BxYq7YUCUhpRSlIwBbJRN6AOMAXSUR0CK9g+QEIPcdX2UKGgGaAloD0MIPzvgumIHWkCUhpRSlGgVTegDaBZHQIsM4DaGpMp1fZQoaAZoCWgPQwg3/686crBdQJSGlFKUaBVN6ANoFkdAixZxsl9jPXV9lChoBmgJaA9DCC8X8Z2YG19AlIaUUpRoFU3oA2gWR0CLGTO8kD6ndX2UKGgGaAloD0MI9dVVgdrcYkCUhpRSlGgVTegDaBZHQIsaCveP7vZ1fZQoaAZoCWgPQwjJHTaRmXtZQJSGlFKUaBVN6ANoFkdAiyEfXPJJXnV9lChoBmgJaA9DCIUIOISqzWFAlIaUUpRoFU3oA2gWR0CLKFA1vVEvdX2UKGgGaAloD0MItYtppvvxY0CUhpRSlGgVTegDaBZHQIs3dFYuCf91fZQoaAZoCWgPQwixpx3+mntiQJSGlFKUaBVN6ANoFkdAi0Y1UuL743V9lChoBmgJaA9DCOSh725lcF9AlIaUUpRoFU3oA2gWR0CLVjxMnJDFdX2UKGgGaAloD0MIoUj3cwpWWkCUhpRSlGgVTegDaBZHQItWrgbZOBV1fZQoaAZoCWgPQwjqspjY/FNjQJSGlFKUaBVN6ANoFkdAi1cgKF7D23V9lChoBmgJaA9DCPEsQUZAFl5AlIaUUpRoFU3oA2gWR0CLWg/iYLLIdX2UKGgGaAloD0MIFmwjnuy2YUCUhpRSlGgVTegDaBZHQItkMlgMMJB1fZQoaAZoCWgPQwiB7PXujwRgQJSGlFKUaBVN6ANoFkdAi22bj1f3OHV9lChoBmgJaA9DCM+8HHbfh2JAlIaUUpRoFU3oA2gWR0CLhPT2nKnvdX2UKGgGaAloD0MIsHWpEfqlNUCUhpRSlGgVS/1oFkdAi4mSOR1YAHV9lChoBmgJaA9DCO1FtB1TlF9AlIaUUpRoFU3oA2gWR0CLkJgLqlgudX2UKGgGaAloD0MINQcI5uhtXECUhpRSlGgVTegDaBZHQIulZ7gKnel1fZQoaAZoCWgPQwi3mnXG9xRfQJSGlFKUaBVN6ANoFkdAi656i9IwunV9lChoBmgJaA9DCC0/cJWnSGVAlIaUUpRoFU3oA2gWR0CLsPq20AtGdX2UKGgGaAloD0MI7BUW3A9ZYkCUhpRSlGgVTegDaBZHQIuxwUnG8291fZQoaAZoCWgPQwgiqYWSyR5gQJSGlFKUaBVN6ANoFkdAi7jYcvM8o3V9lChoBmgJaA9DCBgK2A5GSltAlIaUUpRoFU3oA2gWR0CM13oC+10DdX2UKGgGaAloD0MIaqUQyCXgQECUhpRSlGgVTQABaBZHQIzkMCkoF3Z1fZQoaAZoCWgPQwgpP6n26V1iQJSGlFKUaBVN6ANoFkdAjOddAgPmP3V9lChoBmgJaA9DCLka2ZWWaG5AlIaUUpRoFU2vAmgWR0CM8Bftx+8XdX2UKGgGaAloD0MIG0esxae8N0CUhpRSlGgVS+JoFkdAjPNHWz4UOHV9lChoBmgJaA9DCDLIXYSpDWRAlIaUUpRoFU3oA2gWR0CM9vjI7vG7dX2UKGgGaAloD0MIaFpiZTTOXUCUhpRSlGgVTegDaBZHQI0G8Q04zad1fZQoaAZoCWgPQwjVtItpJiJhQJSGlFKUaBVN6ANoFkdAjQdnPE87p3V9lChoBmgJaA9DCCLGa17VoWNAlIaUUpRoFU3oA2gWR0CNB91ie/YbdX2UKGgGaAloD0MIRbde04P4XUCUhpRSlGgVTegDaBZHQI0KgS13MZB1fZQoaAZoCWgPQwjz/6ojx7JmwJSGlFKUaBVNHAFoFkdAjRyb0OEuhHV9lChoBmgJaA9DCNY5BmQvsm9AlIaUUpRoFU1dAmgWR0CNImVkc0cfdX2UKGgGaAloD0MIIZT3cTTnBkCUhpRSlGgVS/5oFkdAjSnGiQDFInV9lChoBmgJaA9DCDdwB+qUoGJAlIaUUpRoFU3oA2gWR0CNM6qI7/4qdX2UKGgGaAloD0MICvMeZ5oKbUCUhpRSlGgVTUQBaBZHQI03gAZKnNx1fZQoaAZoCWgPQwhPV3csNs9hQJSGlFKUaBVN6ANoFkdAjTfSB9TgmHV9lChoBmgJaA9DCAbzV8jcEWBAlIaUUpRoFU3oA2gWR0CNPaS5AhStdX2UKGgGaAloD0MIgSGrW72JYUCUhpRSlGgVTegDaBZHQI1Xi0F8ohJ1fZQoaAZoCWgPQwhStd0E305gQJSGlFKUaBVN6ANoFkdAjVqks8PnS3V9lChoBmgJaA9DCFGk+zkFZ2VAlIaUUpRoFU3oA2gWR0CNaQHEdeY2dX2UKGgGaAloD0MIV5i+1xAdX0CUhpRSlGgVTegDaBZHQI11rKDCgsd1fZQoaAZoCWgPQwhyUS0iCn1gQJSGlFKUaBVN6ANoFkdAjXjJMxoIwHV9lChoBmgJaA9DCIXP1sHBImRAlIaUUpRoFU3oA2gWR0CNgRbh3qzJdX2UKGgGaAloD0MINq/qrBYNYECUhpRSlGgVTegDaBZHQI2Hqw+t8u11fZQoaAZoCWgPQwgva2KBrzJfQJSGlFKUaBVN6ANoFkdAjZdyuhbno3V9lChoBmgJaA9DCEiHhzB++FtAlIaUUpRoFU3oA2gWR0CNl/ghr30xdX2UKGgGaAloD0MI7SjOUUdlRECUhpRSlGgVS/RoFkdAja0JIMBp6HV9lChoBmgJaA9DCIGzlCynGGNAlIaUUpRoFU3oA2gWR0CNr8YwZflZdX2UKGgGaAloD0MIBW1y+KS1YECUhpRSlGgVTegDaBZHQI22DzVc2R91fZQoaAZoCWgPQwhA9+XM9rNkQJSGlFKUaBVN6ANoFkdAjb4mG21D0HV9lChoBmgJaA9DCHSZmgRvwWJAlIaUUpRoFU3oA2gWR0CNyFBF/hESdX2UKGgGaAloD0MIgczOovc3YECUhpRSlGgVTegDaBZHQI3MJVfeDWd1fZQoaAZoCWgPQwgbguMybudhQJSGlFKUaBVN6ANoFkdAjcxwpWmxdXV9lChoBmgJaA9DCM+6RsuBrGFAlIaUUpRoFU3oA2gWR0CN0iqiGnGbdX2UKGgGaAloD0MI8Il1qny9V0CUhpRSlGgVTegDaBZHQI3sY2qDK5l1fZQoaAZoCWgPQwifPCzUmh1cQJSGlFKUaBVN6ANoFkdAje+ouPFNtnV9lChoBmgJaA9DCKLQsu4fml9AlIaUUpRoFU3oA2gWR0CN/gSt/4IsdX2UKGgGaAloD0MI1jkGZC8wYkCUhpRSlGgVTegDaBZHQI8h/7m+0w91fZQoaAZoCWgPQwj1ona/Cp9lQJSGlFKUaBVN6ANoFkdAjyTRKQJXyXV9lChoBmgJaA9DCMK9Mm/V1WFAlIaUUpRoFU3oA2gWR0CPLExwAEMcdX2UKGgGaAloD0MILSeh9AXYb0CUhpRSlGgVTdsDaBZHQI8+t5jYqXp1fZQoaAZoCWgPQwjqswOuq+ViQJSGlFKUaBVN6ANoFkdAj0D2Cdz4lHV9lChoBmgJaA9DCC20c5qFBmNAlIaUUpRoFU3oA2gWR0CPVF0gbIcSdX2UKGgGaAloD0MIGY9SCc+jYkCUhpRSlGgVTegDaBZHQI9WyzHCGet1fZQoaAZoCWgPQwj+0w0UeEVjQJSGlFKUaBVN6ANoFkdAj1xIQ4CIUXV9lChoBmgJaA9DCL7Ye/HFZ2VAlIaUUpRoFU3oA2gWR0CPYyXUH6dldX2UKGgGaAloD0MIpoC0/wGqWkCUhpRSlGgVTegDaBZHQI9sHmV7hNx1fZQoaAZoCWgPQwhZ2xSPC/1hQJSGlFKUaBVN6ANoFkdAj2+FaB7NS3V9lChoBmgJaA9DCJUsJ6H00VlAlIaUUpRoFU3oA2gWR0CPb8v+wTufdX2UKGgGaAloD0MIYCLeOv81akCUhpRSlGgVTXEBaBZHQI9wq0dBBzF1fZQoaAZoCWgPQwitS43QT3phQJSGlFKUaBVN6ANoFkdAj3SrvkRzzXV9lChoBmgJaA9DCBPSGoNOjkHAlIaUUpRoFUvQaBZHQI92TlJYkmh1fZQoaAZoCWgPQwjHEWvxKYRIQJSGlFKUaBVL4GgWR0CPjAb5uZTidX2UKGgGaAloD0MIOPWB5J0DZECUhpRSlGgVTegDaBZHQI+MpdIGyHF1fZQoaAZoCWgPQwiDa+7o/99hQJSGlFKUaBVN6ANoFkdAj4+cQ7LdN3V9lChoBmgJaA9DCAaf5uRF1l1AlIaUUpRoFU3oA2gWR0CPneexOclPdX2UKGgGaAloD0MIptO6DWoOcECUhpRSlGgVTYwBaBZHQI+lZzzVc2R1fZQoaAZoCWgPQwh6AIv8+gZeQJSGlFKUaBVN6ANoFkdAj6qwfIS13XV9lChoBmgJaA9DCFoPXyaKLlxAlIaUUpRoFU3oA2gWR0CPrW06YE4edX2UKGgGaAloD0MIJEIj2LgIXkCUhpRSlGgVTegDaBZHQI+0lhmXgLt1fZQoaAZoCWgPQwg1JVmHoxsZwJSGlFKUaBVLzWgWR0CPuqCzTnaGdX2UKGgGaAloD0MIQ5JZvcNlXkCUhpRSlGgVTegDaBZHQI/Im1IAfdR1fZQoaAZoCWgPQwj0F3rE6AxgQJSGlFKUaBVN6ANoFkdAj9w/6GgzxnV9lChoBmgJaA9DCNNsHofB12BAlIaUUpRoFU3oA2gWR0CP3qBYFJQMdX2UKGgGaAloD0MIs7YpHpcjZECUhpRSlGgVTegDaBZHQI/rij8DSw51fZQoaAZoCWgPQwiN7bWg9/xbQJSGlFKUaBVN6ANoFkdAj/Sax5cC5nV9lChoBmgJaA9DCHbB4Jo7evo/lIaUUpRoFUvTaBZHQI/4weaKDTV1fZQoaAZoCWgPQwhTrvAuF+FbQJSGlFKUaBVN6ANoFkdAj/lzhHbypnV9lChoBmgJaA9DCHeGqS11rF1AlIaUUpRoFU3oA2gWR0CP/aSK3uuzdX2UKGgGaAloD0MIi4nNx7U7ZUCUhpRSlGgVTegDaBZHQI//OG47Rv51fZQoaAZoCWgPQwhwe4LEdpM5QJSGlFKUaBVLzmgWR0CQAnp7TlT4dX2UKGgGaAloD0MI7gbRWlGSbUCUhpRSlGgVTTMCaBZHQJAJBu/Dcdp1fZQoaAZoCWgPQwgr+kMzT8NnQJSGlFKUaBVN6ANoFkdAkAl2rCFbmnV9lChoBmgJaA9DCBpNLsbAPF5AlIaUUpRoFU3oA2gWR0CQCbpwjt5VdX2UKGgGaAloD0MIgv5Cj5hIYkCUhpRSlGgVTegDaBZHQJAK7EBKcut1fZQoaAZoCWgPQwi/RSdLrTlHQJSGlFKUaBVL/mgWR0CQDYI55qubdX2UKGgGaAloD0MIhslUwShaY0CUhpRSlGgVTegDaBZHQJATKB5HEuR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-lunarlandr-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a64ed95992d2454ccf86ce219c12d20721ab1bcb1dc641d17382d9c9f14d7017
3
+ size 144097
ppo-lunarlandr-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-lunarlandr-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff47ae01680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff47ae01710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff47ae017a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff47ae01830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff47ae018c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff47ae01950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff47ae019e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff47ae01a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff47ae01b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff47ae01b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff47ae01c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff47ae5a150>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651709430.187187,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKrGgz4K+aI+Ys5wvrqxXL48RfW8cgsPvgAAAAAAAAAAen+Svh3QRr3uAoq8TO0Wu9GbrT69wNg7AACAPwAAgD/Nuyg+nIYJvAsVwztfZY65vS5pvRjQ6roAAIA/AACAP7Bnxr52KHa8kME9OoReHjg/9p49zYleuQAAgD8AAIA/AIJQPVwrVrrVurS7H9bCN0Nufrkf2A23AACAPwAAgD/VPI6+ITkDPxQgND3nr5e+FvD+vJ2k/LsAAAAAAAAAADMTjLrhBIO6p5qwOvxckzWEFEe7EhDOuQAAgD8AAIA/GrL9PdzKKD4iFFg8HGAEvuavdz0b6Ti8AAAAAAAAAABAq4Q9e4KfurdzFDrv41G2QczROvt+KrkAAIA/AACAP8C3UT7c710+HiHTvXRXdb6Qg3C83YlcvQAAAAAAAAAA/btVvjSesrxe/om8gFbeui/hHD66S647AACAPwAAgD+zGSc9pj69P8Dt3z2Hl1K+8q9WPWTNpbwAAAAAAAAAAM3PQD7uZqo9A7kLvmVNpr1rmgW9QjX4vAAAAAAAAAAAM7NhvOHKgLpKz2y7aeHDOB8iKjvbCv05AACAPwAAgD8ql4Y+LHWfPLLUmjml3w848nUxPslGwLgAAIA/AACAP3q1V772jTa8L0I7uNwfHbZbK6M9bXdfNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0T/BxYq7YUCUhpRSlIwBbJRN6AOMAXSUR0CK9g+QEIPcdX2UKGgGaAloD0MIPzvgumIHWkCUhpRSlGgVTegDaBZHQIsM4DaGpMp1fZQoaAZoCWgPQwg3/686crBdQJSGlFKUaBVN6ANoFkdAixZxsl9jPXV9lChoBmgJaA9DCC8X8Z2YG19AlIaUUpRoFU3oA2gWR0CLGTO8kD6ndX2UKGgGaAloD0MI9dVVgdrcYkCUhpRSlGgVTegDaBZHQIsaCveP7vZ1fZQoaAZoCWgPQwjJHTaRmXtZQJSGlFKUaBVN6ANoFkdAiyEfXPJJXnV9lChoBmgJaA9DCIUIOISqzWFAlIaUUpRoFU3oA2gWR0CLKFA1vVEvdX2UKGgGaAloD0MItYtppvvxY0CUhpRSlGgVTegDaBZHQIs3dFYuCf91fZQoaAZoCWgPQwixpx3+mntiQJSGlFKUaBVN6ANoFkdAi0Y1UuL743V9lChoBmgJaA9DCOSh725lcF9AlIaUUpRoFU3oA2gWR0CLVjxMnJDFdX2UKGgGaAloD0MIoUj3cwpWWkCUhpRSlGgVTegDaBZHQItWrgbZOBV1fZQoaAZoCWgPQwjqspjY/FNjQJSGlFKUaBVN6ANoFkdAi1cgKF7D23V9lChoBmgJaA9DCPEsQUZAFl5AlIaUUpRoFU3oA2gWR0CLWg/iYLLIdX2UKGgGaAloD0MIFmwjnuy2YUCUhpRSlGgVTegDaBZHQItkMlgMMJB1fZQoaAZoCWgPQwiB7PXujwRgQJSGlFKUaBVN6ANoFkdAi22bj1f3OHV9lChoBmgJaA9DCM+8HHbfh2JAlIaUUpRoFU3oA2gWR0CLhPT2nKnvdX2UKGgGaAloD0MIsHWpEfqlNUCUhpRSlGgVS/1oFkdAi4mSOR1YAHV9lChoBmgJaA9DCO1FtB1TlF9AlIaUUpRoFU3oA2gWR0CLkJgLqlgudX2UKGgGaAloD0MINQcI5uhtXECUhpRSlGgVTegDaBZHQIulZ7gKnel1fZQoaAZoCWgPQwi3mnXG9xRfQJSGlFKUaBVN6ANoFkdAi656i9IwunV9lChoBmgJaA9DCC0/cJWnSGVAlIaUUpRoFU3oA2gWR0CLsPq20AtGdX2UKGgGaAloD0MI7BUW3A9ZYkCUhpRSlGgVTegDaBZHQIuxwUnG8291fZQoaAZoCWgPQwgiqYWSyR5gQJSGlFKUaBVN6ANoFkdAi7jYcvM8o3V9lChoBmgJaA9DCBgK2A5GSltAlIaUUpRoFU3oA2gWR0CM13oC+10DdX2UKGgGaAloD0MIaqUQyCXgQECUhpRSlGgVTQABaBZHQIzkMCkoF3Z1fZQoaAZoCWgPQwgpP6n26V1iQJSGlFKUaBVN6ANoFkdAjOddAgPmP3V9lChoBmgJaA9DCLka2ZWWaG5AlIaUUpRoFU2vAmgWR0CM8Bftx+8XdX2UKGgGaAloD0MIG0esxae8N0CUhpRSlGgVS+JoFkdAjPNHWz4UOHV9lChoBmgJaA9DCDLIXYSpDWRAlIaUUpRoFU3oA2gWR0CM9vjI7vG7dX2UKGgGaAloD0MIaFpiZTTOXUCUhpRSlGgVTegDaBZHQI0G8Q04zad1fZQoaAZoCWgPQwjVtItpJiJhQJSGlFKUaBVN6ANoFkdAjQdnPE87p3V9lChoBmgJaA9DCCLGa17VoWNAlIaUUpRoFU3oA2gWR0CNB91ie/YbdX2UKGgGaAloD0MIRbde04P4XUCUhpRSlGgVTegDaBZHQI0KgS13MZB1fZQoaAZoCWgPQwjz/6ojx7JmwJSGlFKUaBVNHAFoFkdAjRyb0OEuhHV9lChoBmgJaA9DCNY5BmQvsm9AlIaUUpRoFU1dAmgWR0CNImVkc0cfdX2UKGgGaAloD0MIIZT3cTTnBkCUhpRSlGgVS/5oFkdAjSnGiQDFInV9lChoBmgJaA9DCDdwB+qUoGJAlIaUUpRoFU3oA2gWR0CNM6qI7/4qdX2UKGgGaAloD0MICvMeZ5oKbUCUhpRSlGgVTUQBaBZHQI03gAZKnNx1fZQoaAZoCWgPQwhPV3csNs9hQJSGlFKUaBVN6ANoFkdAjTfSB9TgmHV9lChoBmgJaA9DCAbzV8jcEWBAlIaUUpRoFU3oA2gWR0CNPaS5AhStdX2UKGgGaAloD0MIgSGrW72JYUCUhpRSlGgVTegDaBZHQI1Xi0F8ohJ1fZQoaAZoCWgPQwhStd0E305gQJSGlFKUaBVN6ANoFkdAjVqks8PnS3V9lChoBmgJaA9DCFGk+zkFZ2VAlIaUUpRoFU3oA2gWR0CNaQHEdeY2dX2UKGgGaAloD0MIV5i+1xAdX0CUhpRSlGgVTegDaBZHQI11rKDCgsd1fZQoaAZoCWgPQwhyUS0iCn1gQJSGlFKUaBVN6ANoFkdAjXjJMxoIwHV9lChoBmgJaA9DCIXP1sHBImRAlIaUUpRoFU3oA2gWR0CNgRbh3qzJdX2UKGgGaAloD0MINq/qrBYNYECUhpRSlGgVTegDaBZHQI2Hqw+t8u11fZQoaAZoCWgPQwgva2KBrzJfQJSGlFKUaBVN6ANoFkdAjZdyuhbno3V9lChoBmgJaA9DCEiHhzB++FtAlIaUUpRoFU3oA2gWR0CNl/ghr30xdX2UKGgGaAloD0MI7SjOUUdlRECUhpRSlGgVS/RoFkdAja0JIMBp6HV9lChoBmgJaA9DCIGzlCynGGNAlIaUUpRoFU3oA2gWR0CNr8YwZflZdX2UKGgGaAloD0MIBW1y+KS1YECUhpRSlGgVTegDaBZHQI22DzVc2R91fZQoaAZoCWgPQwhA9+XM9rNkQJSGlFKUaBVN6ANoFkdAjb4mG21D0HV9lChoBmgJaA9DCHSZmgRvwWJAlIaUUpRoFU3oA2gWR0CNyFBF/hESdX2UKGgGaAloD0MIgczOovc3YECUhpRSlGgVTegDaBZHQI3MJVfeDWd1fZQoaAZoCWgPQwgbguMybudhQJSGlFKUaBVN6ANoFkdAjcxwpWmxdXV9lChoBmgJaA9DCM+6RsuBrGFAlIaUUpRoFU3oA2gWR0CN0iqiGnGbdX2UKGgGaAloD0MI8Il1qny9V0CUhpRSlGgVTegDaBZHQI3sY2qDK5l1fZQoaAZoCWgPQwifPCzUmh1cQJSGlFKUaBVN6ANoFkdAje+ouPFNtnV9lChoBmgJaA9DCKLQsu4fml9AlIaUUpRoFU3oA2gWR0CN/gSt/4IsdX2UKGgGaAloD0MI1jkGZC8wYkCUhpRSlGgVTegDaBZHQI8h/7m+0w91fZQoaAZoCWgPQwj1ona/Cp9lQJSGlFKUaBVN6ANoFkdAjyTRKQJXyXV9lChoBmgJaA9DCMK9Mm/V1WFAlIaUUpRoFU3oA2gWR0CPLExwAEMcdX2UKGgGaAloD0MILSeh9AXYb0CUhpRSlGgVTdsDaBZHQI8+t5jYqXp1fZQoaAZoCWgPQwjqswOuq+ViQJSGlFKUaBVN6ANoFkdAj0D2Cdz4lHV9lChoBmgJaA9DCC20c5qFBmNAlIaUUpRoFU3oA2gWR0CPVF0gbIcSdX2UKGgGaAloD0MIGY9SCc+jYkCUhpRSlGgVTegDaBZHQI9WyzHCGet1fZQoaAZoCWgPQwj+0w0UeEVjQJSGlFKUaBVN6ANoFkdAj1xIQ4CIUXV9lChoBmgJaA9DCL7Ye/HFZ2VAlIaUUpRoFU3oA2gWR0CPYyXUH6dldX2UKGgGaAloD0MIpoC0/wGqWkCUhpRSlGgVTegDaBZHQI9sHmV7hNx1fZQoaAZoCWgPQwhZ2xSPC/1hQJSGlFKUaBVN6ANoFkdAj2+FaB7NS3V9lChoBmgJaA9DCJUsJ6H00VlAlIaUUpRoFU3oA2gWR0CPb8v+wTufdX2UKGgGaAloD0MIYCLeOv81akCUhpRSlGgVTXEBaBZHQI9wq0dBBzF1fZQoaAZoCWgPQwitS43QT3phQJSGlFKUaBVN6ANoFkdAj3SrvkRzzXV9lChoBmgJaA9DCBPSGoNOjkHAlIaUUpRoFUvQaBZHQI92TlJYkmh1fZQoaAZoCWgPQwjHEWvxKYRIQJSGlFKUaBVL4GgWR0CPjAb5uZTidX2UKGgGaAloD0MIOPWB5J0DZECUhpRSlGgVTegDaBZHQI+MpdIGyHF1fZQoaAZoCWgPQwiDa+7o/99hQJSGlFKUaBVN6ANoFkdAj4+cQ7LdN3V9lChoBmgJaA9DCAaf5uRF1l1AlIaUUpRoFU3oA2gWR0CPneexOclPdX2UKGgGaAloD0MIptO6DWoOcECUhpRSlGgVTYwBaBZHQI+lZzzVc2R1fZQoaAZoCWgPQwh6AIv8+gZeQJSGlFKUaBVN6ANoFkdAj6qwfIS13XV9lChoBmgJaA9DCFoPXyaKLlxAlIaUUpRoFU3oA2gWR0CPrW06YE4edX2UKGgGaAloD0MIJEIj2LgIXkCUhpRSlGgVTegDaBZHQI+0lhmXgLt1fZQoaAZoCWgPQwg1JVmHoxsZwJSGlFKUaBVLzWgWR0CPuqCzTnaGdX2UKGgGaAloD0MIQ5JZvcNlXkCUhpRSlGgVTegDaBZHQI/Im1IAfdR1fZQoaAZoCWgPQwj0F3rE6AxgQJSGlFKUaBVN6ANoFkdAj9w/6GgzxnV9lChoBmgJaA9DCNNsHofB12BAlIaUUpRoFU3oA2gWR0CP3qBYFJQMdX2UKGgGaAloD0MIs7YpHpcjZECUhpRSlGgVTegDaBZHQI/rij8DSw51fZQoaAZoCWgPQwiN7bWg9/xbQJSGlFKUaBVN6ANoFkdAj/Sax5cC5nV9lChoBmgJaA9DCHbB4Jo7evo/lIaUUpRoFUvTaBZHQI/4weaKDTV1fZQoaAZoCWgPQwhTrvAuF+FbQJSGlFKUaBVN6ANoFkdAj/lzhHbypnV9lChoBmgJaA9DCHeGqS11rF1AlIaUUpRoFU3oA2gWR0CP/aSK3uuzdX2UKGgGaAloD0MIi4nNx7U7ZUCUhpRSlGgVTegDaBZHQI//OG47Rv51fZQoaAZoCWgPQwhwe4LEdpM5QJSGlFKUaBVLzmgWR0CQAnp7TlT4dX2UKGgGaAloD0MI7gbRWlGSbUCUhpRSlGgVTTMCaBZHQJAJBu/Dcdp1fZQoaAZoCWgPQwgr+kMzT8NnQJSGlFKUaBVN6ANoFkdAkAl2rCFbmnV9lChoBmgJaA9DCBpNLsbAPF5AlIaUUpRoFU3oA2gWR0CQCbpwjt5VdX2UKGgGaAloD0MIgv5Cj5hIYkCUhpRSlGgVTegDaBZHQJAK7EBKcut1fZQoaAZoCWgPQwi/RSdLrTlHQJSGlFKUaBVL/mgWR0CQDYI55qubdX2UKGgGaAloD0MIhslUwShaY0CUhpRSlGgVTegDaBZHQJATKB5HEuR1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-lunarlandr-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3da6b8c52957c1a0b6446a0b8cdbcd482002678f7ce2303e6f0ed5279013f7c
3
+ size 84893
ppo-lunarlandr-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264608db4b71449d6ea75d4663b15999b9c631210e5036f52bd706a4547cb007
3
+ size 43201
ppo-lunarlandr-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunarlandr-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6321db3570ab6ebc1d327e080d155ac2665f729ba9d01241d873f724099c7b
3
+ size 255040
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 215.32784891850443, "std_reward": 43.14248130650234, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T00:40:44.611397"}