--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-WikiNeural results: [] datasets: - Babelscape/wikineural language: - en metrics: - accuracy - f1 - recall - precision - seqeval pipeline_tag: token-classification --- # bert-base-cased-finetuned-WikiNeural This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased). It achieves the following results on the evaluation set: - Loss: 0.0881 - Loc: {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} - Misc: {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} - Org: {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} - Per: {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} - Overall Precision: 0.9145 - Overall Recall: 0.9380 - Overall F1: 0.9261 - Overall Accuracy: 0.9912 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20BERT-Base%20Transformer.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1 | 1.0 | 5795 | 0.0943 | {'precision': 0.9075480846937126, 'recall': 0.9429051217464316, 'f1': 0.9248888156811068, 'number': 5955} | {'precision': 0.8320190720704199, 'recall': 0.8964631495751828, 'f1': 0.8630397565151225, 'number': 5061} | {'precision': 0.9151428571428571, 'recall': 0.9286749782545666, 'f1': 0.9218592603252267, 'number': 3449} | {'precision': 0.9683036587751908, 'recall': 0.9499040307101727, 'f1': 0.9590155992636372, 'number': 5210} | 0.9039 | 0.9303 | 0.9169 | 0.9901 | | 0.0578 | 2.0 | 11590 | 0.0881 | {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} | {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} | {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} | {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} | 0.9145 | 0.9380 | 0.9261 | 0.9912 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3