Update README.md
Browse files
README.md
CHANGED
@@ -2,42 +2,71 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
5 |
datasets:
|
6 |
- bionlp2004
|
7 |
model-index:
|
8 |
- name: bert-base-cased-finetuned-ner-bio_nlp_2004
|
9 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
-
|
15 |
# bert-base-cased-finetuned-ner-bio_nlp_2004
|
16 |
|
17 |
-
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased)
|
|
|
18 |
It achieves the following results on the evaluation set:
|
19 |
- Loss: 0.2066
|
20 |
-
- Dna:
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Model description
|
31 |
|
32 |
-
|
33 |
|
34 |
## Intended uses & limitations
|
35 |
|
36 |
-
|
37 |
|
38 |
## Training and evaluation data
|
39 |
|
40 |
-
|
41 |
|
42 |
## Training procedure
|
43 |
|
@@ -53,17 +82,17 @@ The following hyperparameters were used during training:
|
|
53 |
- num_epochs: 3
|
54 |
|
55 |
### Training results
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
-
| 0.1701 | 1.0 | 1039 | 0.1927 | {'precision': 0.6152610441767068, 'recall': 0.7253787878787878, 'f1': 0.6657974793568013, 'number': 1056} | {'precision': 0.6616541353383458, 'recall': 0.7457627118644068, 'f1': 0.7011952191235059, 'number': 118} | {'precision': 0.46697388632872505, 'recall': 0.608, 'f1': 0.5282363162467419, 'number': 500} | {'precision': 0.6997455470737913, 'recall': 0.7157730348776679, 'f1': 0.7076685537828101, 'number': 1921} | {'precision': 0.6602894693062719, 'recall': 0.783303730017762, 'f1': 0.716555334897996, 'number': 5067} | 0.6499 | 0.7506 | 0.6966 | 0.9352 |
|
60 |
-
| 0.145 | 2.0 | 2078 | 0.1981 | {'precision': 0.6364372469635627, 'recall': 0.7443181818181818, 'f1': 0.6861632474901789, 'number': 1056} | {'precision': 0.6408450704225352, 'recall': 0.7711864406779662, 'f1': 0.7000000000000002, 'number': 118} | {'precision': 0.4606896551724138, 'recall': 0.668, 'f1': 0.5453061224489797, 'number': 500} | {'precision': 0.7375615090213231, 'recall': 0.7022384174908901, 'f1': 0.7194666666666666, 'number': 1921} | {'precision': 0.6758880340481257, 'recall': 0.8148805999605289, 'f1': 0.7389047959914101, 'number': 5067} | 0.6662 | 0.7722 | 0.7153 | 0.9364 |
|
61 |
-
| 0.1116 | 3.0 | 3117 | 0.2066 | {'precision': 0.6619127516778524, 'recall': 0.7471590909090909, 'f1': 0.7019572953736656, 'number': 1056} | {'precision': 0.589041095890411, 'recall': 0.7288135593220338, 'f1': 0.6515151515151515, 'number': 118} | {'precision': 0.4758522727272727, 'recall': 0.67, 'f1': 0.5564784053156145, 'number': 500} | {'precision': 0.7294117647058823, 'recall': 0.7100468505986466, 'f1': 0.7195990503824848, 'number': 1921} | {'precision': 0.6657656225155033, 'recall': 0.8263272153147819, 'f1': 0.7374075378654457, 'number': 5067} | 0.6628 | 0.7805 | 0.7169 | 0.9367 |
|
62 |
-
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.28.1
|
67 |
- Pytorch 2.0.0
|
68 |
- Datasets 2.11.0
|
69 |
-
- Tokenizers 0.13.3
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
- biology
|
6 |
datasets:
|
7 |
- bionlp2004
|
8 |
model-index:
|
9 |
- name: bert-base-cased-finetuned-ner-bio_nlp_2004
|
10 |
results: []
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
metrics:
|
14 |
+
- seqeval
|
15 |
+
- f1
|
16 |
+
- recall
|
17 |
+
- precision
|
18 |
+
pipeline_tag: token-classification
|
19 |
---
|
20 |
|
|
|
|
|
|
|
21 |
# bert-base-cased-finetuned-ner-bio_nlp_2004
|
22 |
|
23 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased).
|
24 |
+
|
25 |
It achieves the following results on the evaluation set:
|
26 |
- Loss: 0.2066
|
27 |
+
- Dna:
|
28 |
+
- Precision: 0.6619127516778524
|
29 |
+
- Recall: 0.7471590909090909
|
30 |
+
- F1: 0.7019572953736656
|
31 |
+
- Number: 1056
|
32 |
+
- Rna:
|
33 |
+
- Precision: 0.589041095890411
|
34 |
+
- Recall: 0.7288135593220338
|
35 |
+
- F1: 0.6515151515151515
|
36 |
+
- Number': 118
|
37 |
+
- Cell Line:
|
38 |
+
- Precision: 0.4758522727272727
|
39 |
+
- Recall: 0.67
|
40 |
+
- F1: 0.5564784053156145
|
41 |
+
- Number: 500
|
42 |
+
- Cell Type:
|
43 |
+
- Precision: 0.7294117647058823
|
44 |
+
- Recall: 0.7100468505986466
|
45 |
+
- F1: 0.7195990503824848
|
46 |
+
- Number: 1921
|
47 |
+
- Protein:
|
48 |
+
- Precision: 0.6657656225155033
|
49 |
+
- Recall: 0.8263272153147819
|
50 |
+
- F1: 0.7374075378654457
|
51 |
+
- Number': 5067
|
52 |
+
|
53 |
+
- Overall
|
54 |
+
- Precision: 0.6628
|
55 |
+
- Recall: 0.7805
|
56 |
+
- F1: 0.7169
|
57 |
+
- Accuracy: 0.9367
|
58 |
|
59 |
## Model description
|
60 |
|
61 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/tner-bionlp2004/NER%20Project%20Using%20tner-bionlp%202004%20Dataset%20(BERT-Base).ipynb
|
62 |
|
63 |
## Intended uses & limitations
|
64 |
|
65 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
66 |
|
67 |
## Training and evaluation data
|
68 |
|
69 |
+
Dataset Source: https://huggingface.co/datasets/tner/bionlp2004
|
70 |
|
71 |
## Training procedure
|
72 |
|
|
|
82 |
- num_epochs: 3
|
83 |
|
84 |
### Training results
|
85 |
+
| Training Loss | Epoch | Step | Valid. Loss | Dna Precision | Dna Recall | Dna F1 | Dna Number | Rna Precision | Rna Recall | Rna F1 | Rna Number | Cell Line Precision | Cell Type Recall | Cell Type F1 | Cell Type Number | Cell Type | Protein Precision | Protein Recall | Protein F1 | Protein Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
86 |
+
|:---------:|:-----:|:----:|:---------:|:-------:|:------:|:------:|:------:|:-------------:|:----------:|:------:|:----------:|:----------:|:---------:|:-------:|:-------:|:---------:|:-------:|:--------:|:------:|:-----------:|:--------:|:--------:|:----------:|:---------:|
|
87 |
+
| 0.1701 | 1.0 | 1039 | 0.1927 | 0.6153 | 0.7254 | 0.6658 | 1056 | 0.6617 | 0.7458 | 0.7012 | 118 | 0.4670 | 0.608 | 0.5282 | 500 | 0.6997 | 0.7158 | 0.7077 | 1921 | 0.6603 | 0.7833 | 0.7166 | 5067 | 0.6499 | 0.7506 | 0.6966 | 0.9352 |
|
88 |
+
| 0.145 | 2.0 | 2078 | 0.1981 | 0.6364 | 0.7443 | 0.6862 | 1056 | 0.6408 | 0.7712 | 0.7000 | 118 | 0.4607 | 0.668 | 0.5453 | 500 | 0.7376 | 0.7022 | 0.7195 | 1921 | 0.6759 | 0.8149 | 0.7389 | 5067 | 0.6662 | 0.7722 | 0.7153 | 0.9364 |
|
89 |
+
| 0.1116 | 3.0 | 3117 | 0.2066 | 0.6619 | 0.7472 | 0.7020 | 1056 | 0.5890 | 0.7288 | 0.6515 | 118 | 0.4759 | 0.67 | 0.5565 | 500 | 0.7294 | 0.7100 | 0.7196 | 1921 | 0.6658 | 0.8263 | 0.7374 | 5067 | 0.6628 | 0.7805 | 0.7169 | 0.9367 |
|
90 |
|
91 |
+
* Metrics shown above are rounded to the neareset ten-thousandth
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
- Transformers 4.28.1
|
96 |
- Pytorch 2.0.0
|
97 |
- Datasets 2.11.0
|
98 |
+
- Tokenizers 0.13.3
|