DunnBC22 commited on
Commit
acfda51
1 Parent(s): 64b0b95

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - token-classification
5
+ - generated_from_trainer
6
+ datasets:
7
+ - source_data
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: bert-large-cased-lora-finetuned-ner-EMBO-SourceData
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: source_data
21
+ type: source_data
22
+ config: NER
23
+ split: test
24
+ args: NER
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.7998649706157647
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.827835919261859
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8136101139378804
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9583887230224973
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # bert-large-cased-lora-finetuned-ner-EMBO-SourceData
44
+
45
+ This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the source_data dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1282
48
+ - Precision: 0.7999
49
+ - Recall: 0.8278
50
+ - F1: 0.8136
51
+ - Accuracy: 0.9584
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 0.001
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1552 | 1.0 | 3454 | 0.1499 | 0.7569 | 0.7968 | 0.7763 | 0.9516 |
83
+ | 0.1179 | 2.0 | 6908 | 0.1328 | 0.7910 | 0.8120 | 0.8013 | 0.9564 |
84
+ | 0.0998 | 3.0 | 10362 | 0.1282 | 0.7999 | 0.8278 | 0.8136 | 0.9584 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.26.1
90
+ - Pytorch 2.0.1
91
+ - Datasets 2.13.1
92
+ - Tokenizers 0.13.3