--- license: apache-2.0 tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-cased-lora-finetuned-ner-EMBO-SourceData results: [] --- # bert-large-cased-lora-finetuned-ner-EMBO-SourceData This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.1282 - Precision: 0.7999 - Recall: 0.8278 - F1: 0.8136 - Accuracy: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1552 | 1.0 | 3454 | 0.1499 | 0.7569 | 0.7968 | 0.7763 | 0.9516 | | 0.1179 | 2.0 | 6908 | 0.1328 | 0.7910 | 0.8120 | 0.8013 | 0.9564 | | 0.0998 | 3.0 | 10362 | 0.1282 | 0.7999 | 0.8278 | 0.8136 | 0.9584 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3